×
Uraan
92 ProtaktiniumUraanNeptunium
Nd

U

(Uqb)
Algemeen
Naam, simbool, getal Uraan, U, 92
Chemiese reeks Aktiniede
Groep, periode, blok n/b, 7, f
Voorkoms
Voorkoms silwer-wit
Atoommassa 238,02891(3) g/mol
Elektronkonfigurasie [Rn] 5f3 6d1 7s2
Elektrone per skil 2, 8, 18, 32, 21, 9, 2
Fisiese eienskappe
Toestand Vastestof
Digtheid (naby k.t.) 19,1 g/cm³
Smeltpunt (circa) 1 405,3 K
(1 132,2 °C)
Kookpunt 4 404 K
(1 132,2 °C)
Smeltingswarmte 9,14 kJ/mol
Verdampingswarmte 417,1 kJ/mol
Warmtekapasiteit (25 °C) 27,665 J/(mol·K)
Atoomeienskappe
Kristalstruktuur ortorombies
Oksidasietoestande 6, 5, 4, 3
(swak basiese oksied)
Elektronegatiwiteit 1,38 (Skaal van Pauling)
Ionisasie-energieë 1ste: 597,6 kJ/mol
2de: 1 420 kJ/mol
Atoomradius 156 pm
Diverse
Magnetiese rangskikking effens paramagneties
Termiese geleidingsvermoë (300 K) 27,5 W/(m·K)
CAS-registernommer 7440-61-1
Vernaamste isotope
Hoofartikel: Isotope van Uraan
iso NV halfleeftyd VM VE (MeV) VP
232U sin 68,9 jaar α 5,414 228Th
Verwysings

Uraan is 'n silwerwit metaalagtige chemiese element in die aktiniede reeks van die periodieke tabel, met 'n atoomgetal van 92. Die chemiese simbool U word aan uraan voorgeskryf. 'n Uraan-atoom het 92 protone en 92 elektrone. 6 van die elektrone is valenselektrone. Die uraankern bevat tussen 141 en 146 neutrone, wat die 6 isotope van uraan bevestig, die algemeenste hiervan is uraan-238 (146 neutrone) en uraan-235 (143 neutrone). Al hierdie isotope is onstabiel en uraan se radioaktiwiteit is redelik swak. Uraan het die tweede hoogste atoomgetal van elemente wat natuurlik voorkom, naas plutonium-244. Uraan se digtheid is omtrent 71% hoër as dié van lood, maar nie so dig soos goud of wolfram nie. In die natuur kom dit in lae konsentrasies voor (min deeltjies per miljoen) in grond, rotse en water, en word kommersieel ontgin uit uraandraende minerale soos uraniniet.

In die natuur kom uraan voor as uraan-238 (99,284%), uraan-235 (0,711%),%), en baie klein hoeveelhede uraan-234 (0,0058%). Uraan verval stadig deur die uitstraling van 'n alfadeeltjie. Die halfleeftyd van uraan-238 is omtrent 4,47 miljard jaar en vir uraan-235 is dit 704 miljoen jaar, wat dit nuttig maak vir die datering van die Aarde se ouderdom.

Hedendaagse gebruike van uraan baat by die unieke kerneienskappe daarvan. Uraan-235 word geken daarvoor dat dit die enigste splytbare isotoop is wat natuurlik voorkom. Uraan-238 is splytbaar deur vinnige neutrone en is ook fertiel (wat omgeskakel kan word na splytbare plutonium-239 in 'n kernreaktor). 'n Kunsmatige splytbare isotoop, uraan-233 kan geproduseer word vanuit natuurlike torium, wat ook belangrik is vir kerntegnologie. Uraan-235, en tot 'n mindere mate uraan-233, het 'n hoër waarskynlikheid vir spontane kernsplyting as uraan-238 wanneer dit deur stadige neutrone gebombardeer word. Hierdie kernreaksie genereer die hitte in kernreaktore en voorsien die kernsplytingsmateriaal vir kernwapens. Albei gebruike is afhanklik van die beskikbaarheid van uraan om 'n volhoubare kettingreaksie voort te bring. Verarmde uraan (uraan-238) word gebruik in kinetiese energie penetratore en in pantserplate.

Uraan word gebruik as 'n kleurmiddel in uraanglas, wat 'n oranje-rooi tot lemoen-geel skynsels produseer. Dit was ook gebruik vir tinte en beskaduwing tydens vroeë fotografie. Die ontdekking van uraan in die mineraal Uraniniet (of pikblende) in 1789 kan aan Martin Heinrick Klaproth toegeskryf word. Hy het die element vernoem na die planeet Uranus. Eugène-Melchior Péligot was die eerste persoon wat die metaal geskei het, en die radioaktiewe eienskappe daarvan is ontdek in 1896 deur Antoine Becquerel. Navorsing van Enrico Fermi en ander persone wat in 1934 begin het, het gelei tot die gebruik daarvan in die kernkragindustrie en in Little Boy, die eerste kernwapen wat gebruik is in 'n oorlog. 'n Daaropvolgende bewapeningsresies gedurende die Koue Oorlog tussen die Verenigde State van Amerika en die Sowjetunie het tienduisende kernwapens geproduseer wat verrykte uraan en uraan-verarmde plutonium gebruik. Die bewaring van daardie wapens en hul kernmateriaal na die ineenstorting van die Sowjetunie in 1991 is steeds 'n voortdurende bekommernis vir gesondheid en veiligheid van die publiek.

Inhoud

'n Geïnduseerde kernsplytingsgeval met uraan-235.

Wanneer uraan gesuiwer word, is dit 'n silwer-wit, swak radioaktiewe metaal, weinig sagter as staal, sterk elektropositief en 'n swak elektriese geleier. Dit is pletbaar, smeebaar en effens paramagneties. Uraanmetaal het 'n baie hoë digtheid, omtrent 70% digter as lood, maar effens minder dig as goud.

Uraanmetaal reageer met byna alle nie-metaal elemente en hul chemiese verbindings, met 'n reaktiwiteit wat verhoog met temperatuur. Soutsuur en salpetersuur los uraan op, maar nie-oksiderende sure val die element baie stadig aan. Indien dit fyn gemaal word, sal uraan met koue water reageer, en in lug word uraanmetaal bedek met 'n donker laag uraanoksied. Uraan in erts word chemies onttrek en omgeskakel na uraandioksied of ander chemiese vorme wat in die industrie gebruik kan word.

Uraan-235 is kernsplytbaar, en die eerste isotoop wat ontdek is met hierdie eienskap. Ander natuurlike isotope kan splytbaar gemaak word, maar kom nie in die natuur in daardie toestand voor nie. Wanneer uraan-235 met stadige neutrone gebombardeer word, sal hierdie isotoop in die meeste gevalle opdeel in twee kleiner atoomkerne, die kernverbindingsenergie loslaat, en ook nog neutrone. Wanneer hierdie neutrone weer deur ander uraan-235 kerne geabsorbeer word, sal 'n kettingreaksie begin wat tot 'n ontploffing kan lei, indien die reaksie nie verstadig word deur 'n neutron bemiddelaar nie. Laasgenoemde absorbeer die vrye neutrone. So min as 7 kg uraan-235 kan gebruik word om 'n atoombom te maak. Die eerste kernbom wat in oorlog gebruik is, Little Boy, het staatgemaak op uraansplyting, maar die eerste kernontploffing (The gadget) en die bom wat Nagasaki verwoes het (Fat Man), was plutonium bomme.

Uraanmetaal het drie allotropiese vorme:

  • α (ortorombies) stabiel tot en met 660 °C
  • β (tetragonaal) stabiel vanaf 660 °C tot 760 °C
  • γ (liggaamgesentreerde kubies) vanaf 760 °C tot en met smeltpunt—dit is die mees plet- en rekbare toestand.

Militêr

Verarmde uraan word gebruik by verskeie krygsafdelings, onder andere in hoë-digtheid penetratore.

Uraan word hoofsaaklik in die militêre sektor gebruik in hoë-digtheid penetratore. Hierdie ammunisie bestaan gewoonlik uit 'n verarmde uraan-allooi met 1 tot 2% ander elemente. Met 'n hoë snelheidsimpak sorg die digtheid, hardheid, en vlambaarheid van die projektiel vir die vernietiging van swaar gepantserde voertuie. Tenkpantser en ander verwyderbare voertuigpantser word ook verhard met verarmde uraanplate. Die gebruik van verarmde uraan in wapens na die Persiese Golf- en Balkanoorloë het in politieke en omgewingskringe betwisbaar geraak — die gevolge van uraanverbindings in die grond is vervolgens bevraagteken (sien Golfoorlogsindroom).

Verarmde uraan word ook gebruik as skutmateriaal in sommige houers wat radioaktiewe materiale stoor. Alhoewel die metaal op sigself radioaktief is, maak die hoë digtheid dit meer doeltreffend as lood om radiasie vanaf sterk bronne, soos radium, te stop. Ander gebruike van verarmde uraan sluit die volgende in: teengewigte vir vliegtuigbeheeroppervlaktes, ballas in missiel herintrede voertuie, en as skutmateriaal. Weens uraan se hoë digtheid, word hierdie materiaal gebruik in traagheidsgeleidingstelsels en in giroskopiese kompasse. Verarmde uraan geniet voorkeur bo soortgelyke digte materiale weens die betreklik maklike masjieneerbaarheid, gieting, en die relatiewe lae koste daarvan. Die hoof risiko van blootstelling deur verarmde uraan is chemiese vergiftiging deur uraanoksied — 'n groter risiko as radioaktiewe bestraling (uraan is 'n swak alfa-uitstraler).

Gedurende die einde van die Tweede Wêreldoorlog, die Koue Oorlog, en in 'n mindere mate na dit, was uraan gebruik as 'n bron van kernspytingsmateriaal vir die produksie van kernwapens. Daar was hoofsaaklik twee tipes kernsplytingsbomme gebou: 'n relatief eenvoudige toestel wat uraan-235 gebruik, en 'n meer ingewikkelde meganisme wat uraan-238-afgeleide plutonium-239 gebruik het. Later is 'n meer komplekse en by verre kragtige fusiebom ontwikkel: 'n plutonium gebaseerde toestel in 'n uraan-omhulsel wat veroorsaak dat 'n mengsel tritium en deuterium kernfusie ondergaan.

Siviel

Die mees sigbare burgerlike gebruik van uraan is in kernkragsentrales; dit is 'n bron van termiese energie.

Uraan word in die siviele sektor hoofsaaklik gebruik as 'n bron van brandstof vir kernkragsentrales. Een kilogram uraan-235 kan teoreties ongeveer 80 biljoen joule energie (8×1013 joule) verskaf, met die aanname dat volledige kernsplyting plaasvind, wat 3 000 ton steenkool verteenwoordig.

Kommersiële kernkragaanlegte gebruik tipies brandstof wat verryk is tot ongeveer 3% uraan-235. Die CANDU-reaktor is die enigste kommersiële reaktor wat die vermoë het om onverrrykte uraan te gebruik. Brandstof wat vir die V.S.A. vloot se kernskepe gebruik word is gewoonlik hoogs verryk met uraan-235 (die eksakte waardes is geklassifiseerd). In 'n kweekreaktor kan uraan-238 omgeskakel word in plutonium deur die volgende reaksie: 238U (n, gamma) → 239U -(beta) → 239Np -(beta) → 239Pu.

Een van die groot probleemareas rondom die gebruik van uraan in kernkragtegnologie is die verwydering daarvan. Konvensionele kernreaktore verbruik slegs tussen 1 tot 2% uraanbrandstof.

Gloeiende uraanglas blootgestel aan ultraviolet lig.

Voor die ontdekking van radioaktiwiteit was uraan hoofsaaklik gebruik in klein hoeveelhede vir die vervaardiging van geel glas en die verglasing van potte, byvoorbeeld uraanglas en in Fiestaware.

Die ontdekking en isolering van radium in uraanerts (pikblende) deur Marie Curie het aanleiding gegee tot die ontginning van uraan vir radium-ekstraksie, wat gebruik was om naggloeiende verwe vir horlosies en vliegtuigwyserplate te maak. Dit het veroorsaak dat kolossale hoeveelhede uraan vir afvalproduk gelaat is, omdat ongeveer drie ton uraan verwerk moet word vir een gram radium. Hierdie afvalproduk is gestuur na die verglasingsindustrie, wat uraanverglasing goedkoop en volop gemaak het. Afgesien die verglasing in pottebakkerye, het uraanteëlvervaardiging die meeste van die gebruik opgeneem, vanwaar die groen, geel, ligpers, swart, blou, rooi en ander kleure vir gewone badkamer- en kombuisteëls.

Uraanglas soos gebruik vir seëls in vakuumkapasitore.

Uraan was ook gebruik in fotografiese chemikalieë (veral uraannitraat in die ink), in lampgloeidrade, vir die voorkoms van kunsgebitte, en in die leer- en houtbedrywe as kleurmiddel. Uraansoute word gebruik as 'n bytstof in sy of wol. Uranielasetaat en uranielformaat word gebruik vir elektondigte “kleurmiddels” in elektronmikroskopie, vir die kontras van biologiese eksemplare in ultradun dele en vir die negatiewe klad van virusse, geïsoleerde selorganelle en makromolekules.

Die ontdekking van radioaktiwiteit in uraan het tot die addisionele wetenskaplike en praktiese gebruike van die element gelei. Die lang halfleeftyd van die uraan-238 isotoop (4,51×109 jaar) word gebruik in die beraming van die vroegste vulkaniese rotse, en vir ander tipes radiometriese datering, wat uraan-lood datering en uraan-torium datering insluit. Uraanmetaal word gebruik vir X-straal teikens wanneer hoë-energie X-strale gemaak word.

Prehistoriese, natuurlike kernsplyting

In 1972 het die Franse fisikus, Francis Perrin, vyftien antieke en onaktiewe natuurlike kernsplytingsreaktore ontdek in drie afsonderlike ertsneerslae by die Oklo myn in Gaboen, Wes-Afrika. Dit staan gesamentlik bekend as die Oklo-Fossielreaktore. Die ertsneerslag word rondom 1,7 biljoen jaar oud beraam; dit word beweer dat op daardie stadium het uraan-235 omtrent drie persent van die totale uraan op die Aarde beslaan. Die uraan-235 inhoud is hoog genoeg sodat 'n volhoubare kernsplytingskettingreaksie toegelaat is, op voorwaarde dat ander ondersteunende toetande ook bestaan. Die kapasiteit van die omliggende sediment vir die berging van kernafval is deur die V.S.A. se federale regering aangehaal as bewyse vir die lewensvatbaarheid om uitgeputte kernafval by die Yucca Berg Kernafval Repositorium te stoor.

Gebruike voor ontdekking

Die gebruik van uraan in die natuurlike oksiedvorm dateer ten minste uit die jaar 79 n.C. toe dit gebruik was vir die byvoeging van 'n gelerige kleur by keramiek verglasing. Geel glas met 1% uraanoksied is in 1912 gevind in 'n Romeinse villa op Kaap Posillopo in die Baai van Napels, Italië deur R.T. Gunther van die Oxford Universiteit. In die beginjare van die Middeleeue was pikblende onttrek vanuit die Habsburg silwermyne in Joachimsthal, Boheme (nou Jáchymov in die Tseggiese Republiek), en gebruik as 'n kleurmiddel in die plaaslike glasvervaardigingsbedryf. In die vroeë 19de eeu was die wêreld se bekendste bronne van uraanerts eens hierdie myne.

Ontdekking

Antoine Henri Becquerel het die verskynsel van radioaktiwiteit ontdek deur 'n fotografiese plaat aan uraan bloot te stel. (1896)

Die ontdekking van uraan kan toegeskryf word aan die Duitse chemikus, Martin Heinrich Klaproth. Terwyl hy te werk was in sy ekspertimentele laboratorium in Berlyn in 1789, was Klaproth in staat om 'n gelerige verbinding in neerslagvorm (waarskynlik natriumdiuranaat) te skei deur pikblende in salpetersuur op te los, en die oplossing te neutraliseer met natriumhidroksied. Klaproth het die fout gemaak om aan te neem dat die geel stof 'n oksied van 'n onontdekte element was. Hy het dit met houtskool verhit, 'n swart poeier verkry, en verneem die poeier is die nuut ontdekte metaal op sigself (inteendeel, daardie poeier was 'n oksied van uraan). Hy het die nuutontdekte element na die planeet Uranus vernoem, wat William Herschel ag jaar vantevore ontdek het.

In 1841 het Eugène-Melchior Péligot, 'n professor van Analitiese Chemie aan die Conservatoire National des Arts et Métiers (Sentrale Skool van Kunste en Vervaardigings) in Parys, die eerste monster uraanmetaal geskei deur uraantetrachloried te verhit met kalium. In 1850 is die eerste kommersiële gebruik van uraan in glas ontwikkel deur Lloyd & Summerfield van Birmingham, Engeland. Uraan was nie juis gevaarlik beskou gedurende die meeste van die 19de eeu nie, wat tot baie gebruike van die element gelei het. Een van daardie gebruike van die oksied was, soos reeds genoem en nie meer 'n geheim nie, die verkleuring van erdewerke en glas.

Antoine Henri Becquerel het in 1896 radioaktiwiteit ontdek deur uraan te gebruik. Becquerel het die ontdekking in Parys gemaak deur 'n monster uraansout, K2UO2(SO4)2, bo-op 'n fotografiese plaat te los wat nog nie blootgestel was nie. Hy het opgemerk die plaat wat in 'n laai gelê het, het ‘mistig’ geraak. Hy het beslis dat 'n vorm onsigbare lig of strale wat deur die uraan uitgestraal is, het die plaat blootgestel.

Kernsplytingsnavorsing

Enrico Fermi (onder links) en die res van die span wat die eerste volhoubare, kunsmatige kettingreaksie geïnisieer het. (1942)

'n Span wat deur Enrico Fermi in 1934 gelei is, het waargeneem dat uraan met neutrone gebombardeer die uitstraling van beta strale produseer (elektrone of positrone; sien betadeeltjie). Die spytingsproduk was eers verkeerdelik gesien as nuwe elemente met atoomgetalle 93 an 94, wat die Dekaan van die Fakulteit van Rome, Orso Mario Corbino, ‘’ausonium’’ en ‘’hesperium’’ onderskeidelik gedoop het. Die eksperimente wat gelei het tot die ontdekking van uraan se vermoë om te splyt (uitmekaar te breek) na ligter elemente en dan die bindingsenergie vry te stel was uitgevoer deur Otto Hahn en Fritz Strassmann in Hahn se laboratorium in Berlyn. Lise Meitner en haar familielid, fisikus Otto Robert Frisch, het in Febuarie 1939 die fisiese verduideliking daarvan gepubliseer, en die proses ‘kernsplyting’ benoem. Gou daarna het Fermi gepostuleer dat die kernsplyting van uraan dalk genoeg neutrone kan vrylaat om 'n kernreaksie te onderhou. Sy hipotese is in 1939 bevestig, en later is daar gevind dat 'n gemiddelde van 2,5 neutrone vrygestel word vir elke splyting van die skaars uraan isotoop, uraan-235. Verdere werk het gevind dat die meer algemene uraan-238 isotoop kan getransmuteer word na plutonium, wat, soos uraan-235, ook splytbaar is deur termiese neutrone. Hierdie ontdekkings het talle lande gelei om aan die werk te spring met die ontwikkeling van kernwapens en kernkrag.

Op 2 Desember 1942, deel van die Manhattan-projek, het 'n ander span wat gelei was deur Fermi die eerste kunsmatige self-onderhoudende kettingreaksie, Chicago Stapel-1 geïnisieer. In 'n laboratorium onder die pawiljoen van Staggveld by die Chicago Universiteit, het hierdie span die regte toestande geskep vir só 'n reaksie deur 360 ton grafiet, 53 ton uraanoksied en 5,5 ton uraanmetaal op te hoop.

Bomme

Die sampioenwolk oor Hiroshima na die werping van die uraangebaseerde atoombom met die bynaam 'Little Boy'. (1945)

Twee hooftipes atoombomme was ontwikkel deur die V.S.A. gedurende die Tweede Wêreldoorlog: 'n uraangebaseerde toestel (kodenaam “Little Boy”) met kernmateriaal van hoogs verrykte uraan, en 'n plutoniumgebaseerde toestel (sien Trinity-kernwapentoets en Fat Man) met plutonium afgelei vanaf uraan-238. Die eerste kernwapen wat in 'n oorlog gebruik was, was die uraangebaseerde Little Boy toestel. Dit was oor die Japannese stad Hiroshima op 6 Augustus 1945 gedetoneer. Die ontploffing was ekwivalent aan 12 500 ton TNT, waarvan die rukwind en termiese golf amper 50 000 geboue en 75 000 mense vernietig het. Aanvanklik was dit geglo dat uraan betreklik skaars is, en dat kernvermeerdering voorkom kan word deur al die uraanvoorrade uit te koop, maar in 'n dekade is groot uraanreserwes ontdek in baie plekke regoor die wêreld.

Reaktore

Vier gloeilampe wat skyn met elektrisiteit opgewek vanaf die eerste kunsmatige elektrisiteitsproduserende kernreaktor, Eksperimentele Kweekreaktor I (1951)

Die X-10 Grafietreaktor by Oak Ridge Nasionale Laboratorium (ORNL) in Oak Ridge, Tennessee, voorheen bekend as die Clinton Stapel en X-10 Stapel, was die wêreld se tweede kunsmatige kenreaktor (ná Enrico Fermi se Chicago Stapel), maar die eerste reaktor wat ontwerp was vir voortdurende bedryf. Die Eksperimentele Kweekreaktor I by die Idaho Nasionale Laboratorium (INL) naby Arco, Idaho het die eerste kernreaktor geword om elektrisiteit te produseer, op 20 Desember 1951. Aanvanklik het hierdie reaktor vier 150-watt gloeilampe laat skyn, maar verbeteringe het uiteindelik die reaktor in staat gestel om krag aan die hele fasiliteit te verskaf (later was die hele dorp Arco se elektrisiteit voorsien deur kernkrag, 'n eerste in die wêreld). Die wêreld se eerste kernkragsentrale op kommersiële skaal, die Obninsk Kernkragsentale in die Sowjetunie, het opwekking begin met reaktor AM-1 op 27 Junie 1954. Ander kernkragsentrales wat gevolg het was Sellafield in Engeland wat opwekking begin het op 17 Oktober 1956 en die Shippingport Atomiese Kragstasie in Pennsilvanië met bedryfstelling op 26 Mei 1985. Kernkrag was die eerste keer vir aandrywing gebruik deur 'n duikboot in die USS Nautilus (SSN-571) in 1954.

Kontaminasie en die Koue Oorlog nalatenskap

kerntoetse deur die Sowjetunie en die V.S.A. in die 1950’s en vroeë 1960’s, en deur Frankryk en Israel in die 1970’s en 1980’s het beduidende hoeveelhede kernafval vanaf uraan dogterisotope regoor die wêreld versprei. Addisionele afval en besoedeling het voorgekom vanaf verskeie kernongelukke.

Uraanmynwerkers toon meer voorvalle van kanker. 'n Oormatige risiko van longkanker tussen die Navajo uraanmynwerkers is gedokumenteer, en skakel nou aan hul beroep. In die V.S.A. is 'n wet, die “Bestraling Blootstelling Kompensasie Wet,” in 1990 deurgevoer wat vereis dat $100 000 vir “medelye betaling” aan uraanmyners met kanker of ander respiratoriese kwale betaal moet word.

Gedurende die Koue Oorlog tussen die Sowjetunie en die V.S.A. is enorme voorrade uraan bymekaargemaak en tienduisende kernwapens was geskep deur verrykte uraan, en gemaakte plutonium vanaf uraan. Sedert die ineenstorting van die Sowjetunie in 1991, word daar beraam dat ongeveer 540 ton hoogs verrykte wapens graaduraan (genoeg om 40 000 kernplofkoppe te maak) gestoor is in fasiliteite met dikwels onvoldoende bewaking in die Russiese Federasie en ander vorige Sowjetstate. Polisie in Asië, Europa en Suid-Amerika het ten minste in 16 gevalle vanaf 1993 tot 2005 gesmokkelde bomgraad uraan- of plutoniumvragte onderskep, die meeste afkomstig vanaf eens Sowjetbronne. vanaf 1993 tot 2005 het die V.S.A. ongeveer $550 miljoen gespandeer vir die beveiliging van uraan en plutonium voorrade in Rusland. Hierdie geld was gebuik vir die verbetering en sekuriteitsverhoging by navorsing- en stoorfasiliteite. Die Scientific American het in Februarie 2006 gerapporteer dat sommige van hierdie fasiliteite se sekuriteit hewig vervalle kettingskakelomheinings beslaan. Volgens 'n onderhoud in die artikel het een van hierdie fasiliteite monsters verrykte (wapengraad) uraan in 'n besemkas gestoor voor die verbeteringsprojek; 'n ander het boekgehou van die kernplofkopvoorraad deur die bewaring van indekskaarte in 'n skoenboks.

Bioties en abioties

Uraniet, ook bekend as pikblende, is die mees algemene erts wat ontgin word vir die ekstrasie van uraan.

Uraan is 'n element wat natuurlik voorkom, en gevind word in lae konsentrasies in alle rotse, grond en water. Uraan is ook die element met die hoogste atoomgetal wat natuurlik op die aarde voorkom in beduidende hoeveelhede, en word altyd gevind in verbinding met ander elemente. Saam met ander elemente met hoër atoomgetalle as dié van yster, word dit net natuurlik gevorm in supernovas. Die verval van uraan, torium en kalium-40 in die aardmantel word beskou as die hoofbron van hitte wat die buitense kern 'n vloeistof hou en die mantel konveksie dryf, wat op sy beurt weer plaattektoniek veroorsaak.

Uraan se gemiddelde konsentrasie in die Aarde se kors is (afhangend van die bron) 2 tot 4 dele per miljoen, of omtrent 40 keer meer volop as silwer. Daar word bereken dat die aarde se kors vanaf die oppervalk tot sowat 25 km afwaarts bevat 1017 kg uraan, terwyl die oseaan dalk ongeveer 1013 kg kan bevat. Die konsentrasie van uraan in grond strek van 0,7 tot 11 dele per miljoen (en tot 15 dele per miljoen in landbougrond, weens die gebruik van fosfaat kunsmis) en die konsentrasie in seewater is 3 dele per miljard.

Uraan is meer oorvloedig as antimoon, tin, kadmium, kwik, of silwer, en is omtrent so volop soos arseen of molibdeen. Uraan word gevind in honderde tipes minerale, wat uraniniet (die mees algemene uraanerts), karnotiet, autuniet, uranofaan, toberniet, en koffiniet insluit. In uraanryke ertse kom beduidende hoeveelhede uraankonsentrasies voor, soos fosfaatklipneerslae, en minerale soos ligniet- en monasietsande (dit word kommersieel herwin vanuit bronne met so min as 0,1% uraan).

Citrobacter spesies kan uraankonsentrasies tot 300 keer hoër as die omliggende omgewing bevat.

Daar is bewys dat sommige baterieë soos S. putrefaciens en G. metallireducens uraan(VI) kan reduseer tot uraan(IV).

Sommige organismes, soos die korsmos Trapelia involuta of mikroörganismes soos die bakterie Citrobacter, kan konsentrasies uraan absorbeer tot 300 keer hoër as hul omgewing. . Citrobacter spesies absorbeer uranielione wanneer gliserolfosfaat (of ander soortgelyke organiese fosfate) aan hulle gegee word. Na een dag kan een gram bakterieë bekors word met nege gram uranielfosfaatkristalle; dit skep die moontlikheid dat hierdie organismes in biogeneeskunde tot die onbesoedeling van uraan-gekontamineerde water gebruik kan word.

In die natuur vorm uraan(VI) 'n hoogs oplosbare karbonaat komplekse by hoë pH’s (basies). Dit lei tot 'n verhoging in vervoerbaarheid en beskikbaarheid van uraan om vanaf kernafval na grond en ondergrondse water te beweeg, wat kan lei tot gesondheidsgevare. Dit is egter moeilik om uraan in die fosfaatvorm te presipiteer indien oortollige karbonaat teenwoordig is by 'n alkaliese pH. Daar is gevind dat 'n Sphingomonas sp. stam 'n hoë aktiwiteit alkaliese fosfatase kan uitdruk, wat al toegepas is vir die biopresipitasie van uraan in uranielfosfaat spesies vanuit alkaliese oplossings. Die presipitasie vermoë was verhoog deur die fosfatase proteïen in E. coli oormatig uit te druk.

Plante absorbeer sommige uraan vanuit grond. Droë-gewig konsentrasies uraan in plante wissel van 5 tot 60 dele per miljard, en as wat verkry word uit verbrande hout kan konsentrasies tot 4 dele per miljoen bevat. Droë-gewig konsentrasies uraan in voedselplante is tipies laer met een tot twee mikrogram per dag, wat ingeneem word deur dit wat mense eet.

Produksie en ontginning

Geelkoek is 'n gekonsentreerde mengsel uraanoksiedes wat verder verwerk word om suiwer uraan te onttrek.

Uraanproduksie wêreldwyd het in 2006 39 655 ton behaal, waarvan 25% ontgin is in Kanada. Ander belangrike lande wat uraan myn is Australië (19,1%), Kasakstan (13,3%), Niger (8,7%), Rusland (8,6%), en Namibië (7,8%).

Uraanerts word gemyn met verskeie metodes: oopgroef, ondergronds, in situ loging, en deur boorgatmyne. Lae graad uraanerts wat ontgin is in 2006 bevat tipies 0,01 tot 0,25% uraanoksides. Omvangryke ekstaksiemetodes moet toegepas word om metaal van die erts te skei. Hoë graad erts wat gevind word in die Athabasca Kom, Saskatchewan, Kanada kan tot 23% uraanoksiedes op 'n gemiddelde basis bevat. Uraanerts word verbrysel en verwerk tot 'n fyn poeier en dan geloog met óf 'n suur óf 'n alkali. Die uitgeloogde produk word dan onderwerp aan verskeie stappe van presipitering, oplosmiddel ekstraksie, en ioonuitruiling. Die mengsel wat verkry word, genaamd geelkoek, bevat ten minste 75% uraanoksides. Geelkoek word dan gekalsineer om onsuiwerhede van te malingsproses te verwyder voor verdere verwerking.

Kommersiële graad uraan kan geproduseer word deur die reduksie van uraanhaliede met 'n alkalimetaal of 'n alkali-aard metaal. Uraanmetaal kan ook voorberei word deur elektoliese van KU5 of uraantetrafloried, opgelos in 'n gesmelte kalsiumchloried en natriumchloried oplossing. Baie suiwer uraan word geproduseer deur die termiese ontbinding van uraanhaliedes in 'n warm filament.

Bronne en reserwes

Ekonomiese uraanbronne sal vir ongeveer 100 jaar teen die 2006 verbruikingstempo voortbestaan, terwyl dit verwag word dat omtrent dubbel daardie hoeveelheid nog ontdek moet word. Met herverwerking en herwinning kan hierdie reserwes 'n nog vir duisende jare lewer. Daar word beraam dat 5,5 miljoen ton uraanerts reserwes ekonomies ontginbaar is teen US$59/lb, terwyl 35 miljoen ton geklassifiseer word as mineraalhulpbonne (redelike vooruitsigte vir uiteindelike ekonomiese ontginning). 'n Beraamde, bykomende 4,6 miljard ton uraan word gevind in seewater (Japannese wetenskaplikes in die 1980’s het bewys dat die ekstraksie van uraan vanuit seewater deur ioonuitruiling te gebruik is tegnies moontlik).

Uraaneksplorasie neem toe met US$200 miljoen wat wêreldwyd gespandeer is in 2005, 'n 54% toename op die vorige jaar. Hierdie tendens het deur 2006 aangehou, toe eksplorasie-uitgawes tot oor $774 miljoen opgeskiet het, 'n toename oor 250% in vergelyking met 2004.

Australië besit 23% van die wêreld se uraanreserwes, en die wêreld se grootste enkele uraanneerslag is geleë by die Olimpiese Dam Myn in Suid-Australië.

Sommige kernbrandstowwe word verkry vanuit gedemonteerde kernwapens.

Voorraad

Uraan produksie in 2005.

In 2005 het sewentien lande gekonsentreerde uraanoksiedes geproduseer, met Kanada (27,9% van die wêreld se produksie) en Australië (22,8%) die wêreld se grootste produsente, asook Kasakstan (10,5%), Rusland (8,0%), Namibië (7,5%), Niger (7,4%), Usbekistan (5,5%), die V.S.A. (2,5%), Argentinië (2,1%), Oekraïne (1,9%) en China (1,7%) wat noemenswaardige hoeveelhede produseer. In Kasakstan neem produksie gedurig toe, en mag selfs die wêreld se grootse produsent raak met 'n verwagte produksie van 12 826 ton vir 2009, in vergelyking met Kanada en Australië se verwagte 11 100 en 9 430 ton onderskeidelik. Daar word geglo dat die beslissende hoeveelheid beskikbare uraan genoegsaam vir ten minste die volgende 85 jaar sal wees, alhoewel sommige studies toon dat onderbelegging in die laat twintigste eeu voorsieningsprobleme in die 21ste eeu kan veroorsaak. Kenneth S. Deffeyes en Ian D. MacGregor het dit uitgewys dat uraanneerslae blykbaar in 'n logaritmiese-normale verspreiding voorkom. Daar is 'n 300-voudige toename in die herwinbare uraanhoeveelhede vir elke tienvoudige toename in die ertsgraad. Dit beteken dat daar is min hoëgraad-erts beskikbaar teenoor direk eweredige laegraad-erts in 'n meerdere mate.

Oksidasietoestande en oksiedes

Oksiedes

Triuraan-oktaoksied (voorgestel in die diagram) en uraandioksied is die mees algemene uraanoksiedes.

Gekalsineerde uraan geelkoek wat geproduseer word in baie groot meule bevat 'n verspreiding van uraanoksied spesies in die verskeie vorme wat strek van die mees tot minste geoksideerde toestand. Deeltjies met kort residensie tye in 'n kalsieeroond sal gewoonlik minder geoksideerd wees as dié met langer residensie tye, of deeltjies wat in die skoorsteenskroptoring herwin word. Daar word gewoonlik na 'n uraaninhoud van U3O8 verwys, wat dateer uit die dae van die Manhattan-projek toe U3O8 gebruik was as 'n analitiese chemie standaard vir verslae.

Fase verhoudings in die uraan-suurstof stelsel is redelik kompleks. Die mees geoksideerde toestand van uraan is uraan(IV) en uraan(VI), asook hul twee ooreenstemmende oksiedes wat onderskeidelik uraandioksied (UO2) en uraantrioksied (UO3) heet. Ander uraanoksides soos uraanmonoksied (UO) en uraanperoksied (UO4•2H2O) bestaan ook.

Die mees algemene vorm van uraanoksied is triuraanoktaoksied (U3O8) en UO2. Albei oksied vorme is vastestowwe met 'n lae oplosbaarheid in water, en relatief stabiel oor 'n wye reeks omgewingstoestande. Triuraanoktaoksied is (afhangende van die toestande) die mees stabiele vorm van uraan en is ook die mees algemene vorm wat in die natuur voorkom. Uraandioksied is die vorm wat algemeen as 'n kernreaktorbrandstof gebruik word. By omgewingstemperature sal UO2 geleidelik omskakel in U3O8. Die stabiliteit van uraanoksides maak dit die voorkeur vorm vir uraanberging en verwydering.

Waterige chemie

Soute van al vier uraan oksidasie toestande is wateroplosbaar en word bestudeer in waterige oplossings. Die oksidasie toestande is: U3+ (rooi), U4+ (groen), UO2+ (onstabiel), en UO22+ (geel). 'n Klein hoeveelheid vastestof en halfmetaalverbindings, soos UO en US, bestaan vir die oksidasietoestand uraan(II), maar geen eenvoudige ione kom voor nie. Ione van U3+ maak waterstof vry vanuit water en word dus baie onstabiel beskou. Die UO22+-ioon verteenwoordig die uraan(VI) toestand en kom voor in verbindings soos uranielkarbonaat, uranielchloried en uranielsulfaat. UO22+ vorm ook chemiese komplekse met verskeie organiese chelaat-agente, soos uranielasetaat – die mees algemene vorm.

Kabonate

Die Pourbaix diagram vir uraan in 'n nie-kompleksvormende waterige medium (byvoorbeeld perchloorsuur / natriumhidroksied).
Die Pourbaix diagram vir uraan in 'n karbonaat oplossing.

Die wisselwerking van kabonaat anione met uraan(VI) veroorsaak dat die Pourbaix diagram noemenswaardig gewysig word indien die medium vanaf 'n wateroplossing na oplossing wat karbonaat bevat verander. Terwyl die meerderheid karbonate onoplosbaar in water is, is uraankarbonate soms wel oplosbaar in water. Dit is so omdat 'n U(VI) katioon kan bind met twee terminale oksides en drie of meer karbonate om 'n anioonkompleks te vorm.

Die effek van pH

’n Diagram wat die relatiewe konsentrasies van verskillende chemiese vorme van uraan toon in 'n nie-kompleksvormende waterige medium (byvoorbeeld perchloorsuur / natriumhidroksied).
’n Diagram wat die relatiewe konsentrasies van verskillende chemiese vorme van uraan toon in 'n waterige kabonaat oplossing.

Die uraanfraksie diagramme met die teenwoordigheid van karbonate illustreer dit verder: wanneer die pH van 'n uraan(VI) oplossing vermeerder, sal die uraan omgeskakel word na 'n hidreerde uraanoksied hidroksied en by hoë pH’s sal dit 'n anioniese hidroksiedkompleks word.

Wanneer karbonate bygevoeg word, sal uraan omgeskakel word na 'n reeks karbonaatkomplekse indien die pH vermeerder. Een gevolg van hierdie reaksies is die toename in oplosbaarheid van uraan in 'n pH reeks van 6 tot 8 'n verskynsel wat 'n invloed het op die langtermyn stabiliteit van uitgeputte uraandioksied kernbrandstowwe.

Hidrides, karbides, en nitrides

Uraan wat verhit word in die teenwoordigheid van waterstof by 'n temperatuur van 250 tot 300 °C reageer om uraanhidried te vorm. By hoër temperature sal die waterstof omkeerbaar verwyder word. Hierdie eienskap van uraan maak uraanhidrides geskik as 'n begin-materiaal vir die vervaardiging van reaktiewe met verskeie ander karbiede-, nitriede-, en haliedeverbindings. Twee kristal veranderinge van uraanhidried betaan: 'n α vorm verkrygbaar teen lae temperature, en 'n β vorm wat geskep word teen temperature bo 250 °C.

Albei uraankarbides en uraannitrides is realtief inerte halfmetaalagtige verbindings wat minimaal oplosbaar is in sure, reageer met water, en kan verbrand in lug om U3O8 te vorm. Karbides van uraan sluit uraanmonokarbied (UC), uraandikarbied (UC 2), en diuraantrikarbied (U2C3) in. UC en UC2 word gevorm deur koolstof by gesmelte uraan te voeg, of deur die uraanmetaal aan koolstofmonoksied by hoë termperature bloot te stel. U2C3 is stabiel onder 1 800 °C, en word voorberei deur 'n verhitte mengsel UC en UC2 onder meganiese spanning te onderwerp. Uraannitrides word verkry deur die direkte blootstelling van die metaal aan stikstof insluitend unraanmononitried (UN), uraandinitried (UN2) en diuraantrinitried (U2N3).

Halides

Uraanheksafluoried is die voermateriaal wat gebruik word om uraan-235 vanuit natuurlike uraan te skei.

Alle uraanfluoride word geskep deur uraantetrafluoried te gebruik (UF4); UF4 word self voorberei deur die hidrofluorinering van uraandioksied. Die reduksie van UF4 met waterstof teen 'n temperatuur van 1 000 °C produseer uraantrifluoried UF3. Onder die korrekte toestande – temperatuur en druk – sal die reaksie tussen soliede UF4 met uraanheksafluoriedgas (UF6) intermediêre fluorides vorm soos U2F9, U4F17 en UF5.

Teen kamertemperatuur het UF6 'n hoë dampdruk, wat dit gebruiklik maak in die gasdiffusie proses om uraan-235 vanuit die meer algemene uraan-238 isotoop te skei. Hierdie verbinding kan voorberei word uit uraandioksied en uraanhidried deur die volgende proses:

UO2 + 4 HF → UF4 + 2 H2O (500 °C, endotermies)
UF4 + F2 → UF6 (350 °C, endotermies)

Die gevormde UF6, 'n wit vastestof, is hoogs reaktief (by fluorinering, sublimeer maklik (vorm byna 'n perfekte gasdamp)), en is die mees vlugtige verbinding van uraan wat bestaan.

Een metode om uraantetrachloried (UCl4) te berei is deur die reaksie tussen chloor met uraanmetaal of uraanhidried. Die reduksie van UCl4 in die teenwoordigheid van waterstof produseer uraantricloried (UCl3) terwyl hoër uraanchlorides geproduseer word deur die reaksie met bykomstige chloor. Alle uraanchlorides reageer met water en lug.

Bromides en jodides van uraan word gevorm deur die direkte reaksie van broom en jodium, ooreenkomstig, of deur die addisie van UH3 by die betrokke element se sure. Bekende voorbeelde sluit die volgende in: UBr3, UBr4, UI3 en UI4. Uraanoksihalides is wateroplosbaar en sluit UO2F2, UOCl2, UO2Cl2 en UO2Br2 in. Die stabiliteit van oksihalides verminder soos die atoommassa van die halide komponent toeneem.

  1. The Chemistry of the Actinide and Transactinide Elements: Third Edition by L.R. Morss, N.M. Edelstein, J. Fuger, eds. (Netherlands: Springer, 2006.)
  2. Hoffman, D. C.; Lawrence, F. O.; Mewherter, J. L.; Rourke, F. M. (1971). . Nature. 234: 132–134. doi:.
  3. (PDF) (in Engels). (PDF) vanaf die oorspronklike op 7 Februarie 2012.
  4. .
  5. Emsley 2001, p. 479.
  6. RIA Novosti February 18, 2010
  7. C. R. Hammond (2000). (PDF). CRC press. ISBN 0-8493-0481-4.
  8. "". The McGraw-Hill Science and Technology Encyclopedia (5th edition). The McGraw-Hill Companies, Inc..
  9. "". Columbia Electronic Encyclopedia (6th Edition). Columbia University Press.
  10. "". Encyclopedia of Espionage, Intelligence, and Security. The Gale Group, Inc..
  11. A. D. Rollett (2008). . John Wiley and Sons. p. 108. ISBN 0-470-40835-9.
  12. Emsley 2001, p. 480.
  13. (in Engels). Federation of American Scientists. 1998. vanaf die oorspronklike op 28 Augustus 2016. Besoek op19 Februarie 2007.
  14. (in Engels). Newscientist.com. vanaf die oorspronklike op 15 Augustus 2014. Besoek op12 September 2008.
  15. . Office of Civilian Radioactive Waste Management. Besoek op28 Junie 2006.
  16. Emsley 2001, p. 482.
  17. Emsley 2001, p. 477.
  18. M. H. Klaproth (1789). "Chemische Untersuchung des Uranits, einer neuentdeckten metallischen Substanz". Chemische Annalen. 2: 387–403.
  19. "". The American Heritage Dictionary of the English Language (4th edition). Houghton Mifflin Company.
  20. E.-M. Péligot (1842). . Annales de chimie et de physique. 5 (5): 5–47.
  21. Emsley 2001, p. 478.
  22. Seaborg 1968, p. 773.
  23. Fermi, Enrico (December 12, 1938). (PDF). Royal Swedish Academy of Sciences.
  24. De Gregorio, A. (2003). "A Historical Note About How the Property was Discovered that Hydrogenated Substances Increase the Radioactivity Induced by Neutrons". [physics.hist-ph].
  25. Nigro, M, (2004). (PDF). Besoek op2009-05-05.CS1 maint: extra punctuation (link) AS1-onderhoud: meer as een naam: authors list (link)
  26. Peter van der Krogt. (in Nederlands). vanaf die oorspronklike op 9 Desember 2009. Besoek op5 Mei 2009.
  27. L. Meitner, O. Frisch (1939). . Nature. 143: 239–240. doi:.
  28. J.E. Helmreich, Gathering Rare Ores: The Diplomacy of Uranium Acquisition, 1943–1954, Princeton UP, 1986: ch. 10
  29. . U.S. Department of Energy, Argonne National Laboratory. 1998. Geargiveer vanaf op 2006-09-26. Besoek op2007-01-28.
  30. . BBC news (in Engels). 17 Oktober 1956. vanaf die oorspronklike op 27 Oktober 2019. Besoek op28 Junie 2006.
  31. T. Warneke, I. W. Croudace, P. E. Warwick, R. N. Taylor (2002). "A new ground-level fallout record of uranium and plutonium isotopes for northern temperate latitudes". Earth and Planetary Science Letters. 203 (3–4): 1047–1057. doi:.AS1-onderhoud: meer as een naam: authors list (link)
  32. Newtan, Samuel Upton (2007). Nuclear War 1 and Other Major Nuclear Disasters of the 20th Century, AuthorHouse.
  33. . Geargiveer vanaf op 26 Augustus 2013. Besoek op22 April 2010.
  34. Gilliland, Frank D. MD; Hunt, William C. MS; Pardilla, Marla MSW, MPH; Key, Charles R. MD, PhD (March 2000). . New England Journal of Medicine. 42 (3): 278–283.AS1-onderhoud: meer as een naam: authors list (link)
  35. Glaser, Alexander and von Hippel, Frank N. "Thwarting Nuclear Terrorism" Scientific American Magazine, February 2006
  36. (in Engels). NASA. Geargiveer vanaf op 23 November 2010. Besoek op19 Februarie 2007.
  37. Biever, Celeste (27 July 2005). . New Scientist.Cite journal requires |journal= (help)
  38. . physicsweb. 7 May 2003. Besoek op2007-01-14.
  39. Min, M; Xu, H; Chen, J; Fayek, M (2005). "Evidence of uranium biomineralization in sandstone-hosted roll-front uranium deposits, northwestern China". Ore Geology Reviews. 26: 198. doi:.
  40. Emsley 2001, pp. 476 and 482.
  41. L. E. Macaskie, R. M. Empson, A. K. Cheetham, C. P. Grey, A. J. Skarnulis (1992). "Uranium bioaccumulation by a Citrobacter sp. as a result of enzymically mediated growth of polycrystallineHUO2PO4". Science. 257 (5071): 782–784. doi:. PMID .AS1-onderhoud: meer as een naam: authors list (link)
  42. K.S. Nilgiriwala, A. Alahari, A. S. Rao & S.K. Apte (2008). . Applied and Environmental Microbiology. 74 (17): 5516–5523. doi:. ISSN . PMC. PMID .Onbekende parameter |month= geïgnoreer (help)AS1-onderhoud: meer as een naam: authors list (link)
  43. Seaborg 1968, p. 774.
  44. (in Engels). vanaf die oorspronklike op 23 Mei 2020. Besoek op4 September 2009.
  45. C. K. Gupta, T. K. Mukherjee (1990). . CRC Press. pp. 74–75. ISBN 0-8493-6804-9.
  46. (in Engels). World-nuclear-news.org. vanaf die oorspronklike op 26 Mei 2020. Besoek op12 September 2008.
  47. (in Engels). International Atomic Energy Agency. 2006. vanaf die oorspronklike op 5 Augustus 2014. Besoek op29 Maart 2007.
  48. . Japan Atomic Energy Research Institute. 23 Augustus 1999. vanaf die oorspronklike op 7 Maart 2016. Besoek op3 September 2008.
  49. (in Engels). 12 Februarie 1996. vanaf die oorspronklike op 23 Mei 2020. Besoek op29 Maart 2007.
  50. (in Engels). vanaf die oorspronklike op 12 Februarie 2013.
  51. (in Engels). South Australian Chamber of Mines and Energy. 2002. vanaf die oorspronklike op 23 Mei 2020. Besoek op14 Januarie 2007.
  52. (in Engels). UxC Consulting Company, LLC. Geargiveer vanaf op 6 Maart 2016. Besoek op11 Februarie 2007.
  53. Posted by Mithridates (July 24, 2008). . Mithridates.blogspot.com. Besoek op2008-09-12.
  54. (in Turks). Zaman.com.tr. Besoek op2008-09-12.
  55. (in Engels). Massachusetts Institute of Technology. 21 Maart 2007. vanaf die oorspronklike op 5 November 2013. Besoek op29 Maart 2007.
  56. Kenneth S. Deffeyes and Ian D. MacGregor (1980-01-01). . Scientific American. p. 66. Besoek op2008-04-21.
  57. Seaborg 1968, p. 779.
  58. . Argonne National Laboratory. Besoek op2007-02-18.
  59. Seaborg 1968, p. 778.
  60. Ignasi Puigdomenech, Hydra/Medusa Chemical Equilibrium Database and Plotting Software (2004) KTH Royal Institute of Technology, freely downloadable software at 29 September 2007 op Wayback Machine
  61. Seaborg 1968, p. 782.
  62. Seaborg 1968, p. 780.

Volledige bronnelys inligting vir werke aangehaal


Publikasie datum: September 03, 2021

uraan, protaktinium, neptuniumnd, periodieke, tabelalgemeennaam, simbool, getal, 92chemiese, reeks, aktiniedegroep, periode, blok, fvoorkomsvoorkoms, silwer, witatoommassa, 02891, molelektronkonfigurasie, 7s2elektrone, skil, 2fisiese, eienskappetoestand, vaste. 92 Protaktinium Uraan NeptuniumNd U Uqb Periodieke tabelAlgemeenNaam simbool getal Uraan U 92Chemiese reeks AktiniedeGroep periode blok n b 7 fVoorkomsVoorkoms silwer witAtoommassa 238 02891 3 g molElektronkonfigurasie Rn 5f3 6d1 7s2Elektrone per skil 2 8 18 32 21 9 2Fisiese eienskappeToestand VastestofDigtheid naby k t 19 1 g cm Smeltpunt circa 1 405 3 K 1 132 2 C Kookpunt 4 404 K 1 132 2 C Smeltingswarmte 9 14 kJ molVerdampingswarmte 417 1 kJ molWarmtekapasiteit 25 C 27 665 J mol K AtoomeienskappeKristalstruktuur ortorombiesOksidasietoestande 6 5 4 3 1 swak basiese oksied Elektronegatiwiteit 1 38 Skaal van Pauling Ionisasie energiee 1ste 597 6 kJ mol2de 1 420 kJ molAtoomradius 156 pmDiverseMagnetiese rangskikking effens paramagnetiesTermiese geleidingsvermoe 300 K 27 5 W m K CAS registernommer 7440 61 1Vernaamste isotopeHoofartikel Isotope van Uraan iso NV halfleeftyd VM VE MeV VP232U sin 68 9 jaar a 5 414 228ThVerwysings Uraan is n silwerwit metaalagtige chemiese element in die aktiniede reeks van die periodieke tabel met n atoomgetal van 92 Die chemiese simbool U word aan uraan voorgeskryf n Uraan atoom het 92 protone en 92 elektrone 6 van die elektrone is valenselektrone Die uraankern bevat tussen 141 en 146 neutrone wat die 6 isotope van uraan bevestig die algemeenste hiervan is uraan 238 146 neutrone en uraan 235 143 neutrone Al hierdie isotope is onstabiel en uraan se radioaktiwiteit is redelik swak Uraan het die tweede hoogste atoomgetal van elemente wat natuurlik voorkom naas plutonium 244 2 Uraan se digtheid is omtrent 71 hoer as die van lood maar nie so dig soos goud of wolfram nie In die natuur kom dit in lae konsentrasies voor min deeltjies per miljoen in grond rotse en water en word kommersieel ontgin uit uraandraende minerale soos uraniniet In die natuur kom uraan voor as uraan 238 99 284 uraan 235 0 711 3 en baie klein hoeveelhede uraan 234 0 0058 Uraan verval stadig deur die uitstraling van n alfadeeltjie Die halfleeftyd van uraan 238 is omtrent 4 47 miljard jaar en vir uraan 235 is dit 704 miljoen jaar 4 wat dit nuttig maak vir die datering van die Aarde se ouderdom Hedendaagse gebruike van uraan baat by die unieke kerneienskappe daarvan Uraan 235 word geken daarvoor dat dit die enigste splytbare isotoop is wat natuurlik voorkom Uraan 238 is splytbaar deur vinnige neutrone en is ook fertiel wat omgeskakel kan word na splytbare plutonium 239 in n kernreaktor n Kunsmatige splytbare isotoop uraan 233 kan geproduseer word vanuit natuurlike torium wat ook belangrik is vir kerntegnologie Uraan 235 en tot n mindere mate uraan 233 het n hoer waarskynlikheid vir spontane kernsplyting as uraan 238 wanneer dit deur stadige neutrone gebombardeer word Hierdie kernreaksie genereer die hitte in kernreaktore en voorsien die kernsplytingsmateriaal vir kernwapens Albei gebruike is afhanklik van die beskikbaarheid van uraan om n volhoubare kettingreaksie voort te bring Verarmde uraan uraan 238 word gebruik in kinetiese energie penetratore en in pantserplate 5 Uraan word gebruik as n kleurmiddel in uraanglas wat n oranje rooi tot lemoen geel skynsels produseer Dit was ook gebruik vir tinte en beskaduwing tydens vroee fotografie Die ontdekking van uraan in die mineraal Uraniniet of pikblende in 1789 kan aan Martin Heinrick Klaproth toegeskryf word Hy het die element vernoem na die planeet Uranus Eugene Melchior Peligot was die eerste persoon wat die metaal geskei het en die radioaktiewe eienskappe daarvan is ontdek in 1896 deur Antoine Becquerel Navorsing van Enrico Fermi en ander persone wat in 1934 begin het het gelei tot die gebruik daarvan in die kernkragindustrie en in Little Boy die eerste kernwapen wat gebruik is in n oorlog n Daaropvolgende bewapeningsresies gedurende die Koue Oorlog tussen die Verenigde State van Amerika en die Sowjetunie het tienduisende kernwapens geproduseer wat verrykte uraan en uraan verarmde plutonium gebruik Die bewaring van daardie wapens en hul kernmateriaal na die ineenstorting van die Sowjetunie in 1991 is steeds n voortdurende bekommernis vir gesondheid en veiligheid van die publiek 6 Inhoud 1 Eienskappe 2 Toepassings 2 1 Militer 2 2 Siviel 3 Geskiedenis 3 1 Prehistoriese natuurlike kernsplyting 3 2 Gebruike voor ontdekking 3 3 Ontdekking 3 4 Kernsplytingsnavorsing 3 5 Bomme 3 6 Reaktore 3 7 Kontaminasie en die Koue Oorlog nalatenskap 4 Voorkoms 4 1 Bioties en abioties 4 2 Produksie en ontginning 4 3 Bronne en reserwes 4 4 Voorraad 5 Verbindings 5 1 Oksidasietoestande en oksiedes 5 1 1 Oksiedes 5 1 2 Waterige chemie 5 1 3 Kabonate 5 1 4 Die effek van pH 5 2 Hidrides karbides en nitrides 5 3 Halides 6 Minerale 7 Verwysings 8 Bronne 9 Eksterne skakelsEienskappe Wysig n Geinduseerde kernsplytingsgeval met uraan 235 Wanneer uraan gesuiwer word is dit n silwer wit swak radioaktiewe metaal weinig sagter as staal 7 sterk elektropositief en n swak elektriese geleier 8 Dit is pletbaar smeebaar en effens paramagneties 7 Uraanmetaal het n baie hoe digtheid omtrent 70 digter as lood maar effens minder dig as goud Uraanmetaal reageer met byna alle nie metaal elemente en hul chemiese verbindings met n reaktiwiteit wat verhoog met temperatuur 9 Soutsuur en salpetersuur los uraan op maar nie oksiderende sure val die element baie stadig aan 8 Indien dit fyn gemaal word sal uraan met koue water reageer en in lug word uraanmetaal bedek met n donker laag uraanoksied 7 Uraan in erts word chemies onttrek en omgeskakel na uraandioksied of ander chemiese vorme wat in die industrie gebruik kan word Uraan 235 is kernsplytbaar en die eerste isotoop wat ontdek is met hierdie eienskap Ander natuurlike isotope kan splytbaar gemaak word maar kom nie in die natuur in daardie toestand voor nie Wanneer uraan 235 met stadige neutrone gebombardeer word sal hierdie isotoop in die meeste gevalle opdeel in twee kleiner atoomkerne die kernverbindingsenergie loslaat en ook nog neutrone Wanneer hierdie neutrone weer deur ander uraan 235 kerne geabsorbeer word sal n kettingreaksie begin wat tot n ontploffing kan lei indien die reaksie nie verstadig word deur n neutron bemiddelaar nie Laasgenoemde absorbeer die vrye neutrone So min as 7 kg uraan 235 kan gebruik word om n atoombom te maak 10 Die eerste kernbom wat in oorlog gebruik is Little Boy het staatgemaak op uraansplyting maar die eerste kernontploffing The gadget en die bom wat Nagasaki verwoes het Fat Man was plutonium bomme Uraanmetaal het drie allotropiese vorme 11 a ortorombies stabiel tot en met 660 C b tetragonaal stabiel vanaf 660 C tot 760 C g liggaamgesentreerde kubies vanaf 760 C tot en met smeltpunt dit is die mees plet en rekbare toestand Toepassings WysigMiliter Wysig Verarmde uraan word gebruik by verskeie krygsafdelings onder andere in hoe digtheid penetratore Uraan word hoofsaaklik in die militere sektor gebruik in hoe digtheid penetratore Hierdie ammunisie bestaan gewoonlik uit n verarmde uraan allooi met 1 tot 2 ander elemente Met n hoe snelheidsimpak sorg die digtheid hardheid en vlambaarheid van die projektiel vir die vernietiging van swaar gepantserde voertuie Tenkpantser en ander verwyderbare voertuigpantser word ook verhard met verarmde uraanplate Die gebruik van verarmde uraan in wapens na die Persiese Golf en Balkanoorloe het in politieke en omgewingskringe betwisbaar geraak die gevolge van uraanverbindings in die grond is vervolgens bevraagteken sien Golfoorlogsindroom 10 Verarmde uraan word ook gebruik as skutmateriaal in sommige houers wat radioaktiewe materiale stoor Alhoewel die metaal op sigself radioaktief is maak die hoe digtheid dit meer doeltreffend as lood om radiasie vanaf sterk bronne soos radium te stop 8 Ander gebruike van verarmde uraan sluit die volgende in teengewigte vir vliegtuigbeheeroppervlaktes ballas in missiel herintrede voertuie en as skutmateriaal 7 Weens uraan se hoe digtheid word hierdie materiaal gebruik in traagheidsgeleidingstelsels en in giroskopiese kompasse 7 Verarmde uraan geniet voorkeur bo soortgelyke digte materiale weens die betreklik maklike masjieneerbaarheid gieting en die relatiewe lae koste daarvan 12 Die hoof risiko van blootstelling deur verarmde uraan is chemiese vergiftiging deur uraanoksied n groter risiko as radioaktiewe bestraling uraan is n swak alfa uitstraler Gedurende die einde van die Tweede Wereldoorlog die Koue Oorlog en in n mindere mate na dit was uraan gebruik as n bron van kernspytingsmateriaal vir die produksie van kernwapens Daar was hoofsaaklik twee tipes kernsplytingsbomme gebou n relatief eenvoudige toestel wat uraan 235 gebruik en n meer ingewikkelde meganisme wat uraan 238 afgeleide plutonium 239 gebruik het Later is n meer komplekse en by verre kragtige fusiebom ontwikkel n plutonium gebaseerde toestel in n uraan omhulsel wat veroorsaak dat n mengsel tritium en deuterium kernfusie ondergaan 13 Siviel Wysig Die mees sigbare burgerlike gebruik van uraan is in kernkragsentrales dit is n bron van termiese energie Uraan word in die siviele sektor hoofsaaklik gebruik as n bron van brandstof vir kernkragsentrales Een kilogram uraan 235 kan teoreties ongeveer 80 biljoen joule energie 8 1013 joule verskaf met die aanname dat volledige kernsplyting plaasvind wat 3 000 ton steenkool verteenwoordig 5 Kommersiele kernkragaanlegte gebruik tipies brandstof wat verryk is tot ongeveer 3 uraan 235 5 Die CANDU reaktor is die enigste kommersiele reaktor wat die vermoe het om onverrrykte uraan te gebruik Brandstof wat vir die V S A vloot se kernskepe gebruik word is gewoonlik hoogs verryk met uraan 235 die eksakte waardes is geklassifiseerd In n kweekreaktor kan uraan 238 omgeskakel word in plutonium deur die volgende reaksie 7 238U n gamma 239U beta 239Np beta 239Pu Een van die groot probleemareas rondom die gebruik van uraan in kernkragtegnologie is die verwydering daarvan Konvensionele kernreaktore verbruik slegs tussen 1 tot 2 uraanbrandstof Gloeiende uraanglas blootgestel aan ultraviolet lig Voor die ontdekking van radioaktiwiteit was uraan hoofsaaklik gebruik in klein hoeveelhede vir die vervaardiging van geel glas en die verglasing van potte byvoorbeeld uraanglas en in Fiestaware Die ontdekking en isolering van radium in uraanerts pikblende deur Marie Curie het aanleiding gegee tot die ontginning van uraan vir radium ekstraksie wat gebruik was om naggloeiende verwe vir horlosies en vliegtuigwyserplate te maak 14 Dit het veroorsaak dat kolossale hoeveelhede uraan vir afvalproduk gelaat is omdat ongeveer drie ton uraan verwerk moet word vir een gram radium Hierdie afvalproduk is gestuur na die verglasingsindustrie wat uraanverglasing goedkoop en volop gemaak het Afgesien die verglasing in pottebakkerye het uraanteelvervaardiging die meeste van die gebruik opgeneem vanwaar die groen geel ligpers swart blou rooi en ander kleure vir gewone badkamer en kombuisteels Uraanglas soos gebruik vir seels in vakuumkapasitore Uraan was ook gebruik in fotografiese chemikaliee veral uraannitraat in die ink 7 in lampgloeidrade vir die voorkoms van kunsgebitte en in die leer en houtbedrywe as kleurmiddel Uraansoute word gebruik as n bytstof in sy of wol Uranielasetaat en uranielformaat word gebruik vir elektondigte kleurmiddels in elektronmikroskopie vir die kontras van biologiese eksemplare in ultradun dele en vir die negatiewe klad van virusse geisoleerde selorganelle en makromolekules Die ontdekking van radioaktiwiteit in uraan het tot die addisionele wetenskaplike en praktiese gebruike van die element gelei Die lang halfleeftyd van die uraan 238 isotoop 4 51 109 jaar word gebruik in die beraming van die vroegste vulkaniese rotse en vir ander tipes radiometriese datering wat uraan lood datering en uraan torium datering insluit Uraanmetaal word gebruik vir X straal teikens wanneer hoe energie X strale gemaak word 7 Geskiedenis WysigPrehistoriese natuurlike kernsplyting Wysig In 1972 het die Franse fisikus Francis Perrin vyftien antieke en onaktiewe natuurlike kernsplytingsreaktore ontdek in drie afsonderlike ertsneerslae by die Oklo myn in Gaboen Wes Afrika Dit staan gesamentlik bekend as die Oklo Fossielreaktore Die ertsneerslag word rondom 1 7 biljoen jaar oud beraam dit word beweer dat op daardie stadium het uraan 235 omtrent drie persent van die totale uraan op die Aarde beslaan 15 Die uraan 235 inhoud is hoog genoeg sodat n volhoubare kernsplytingskettingreaksie toegelaat is op voorwaarde dat ander ondersteunende toetande ook bestaan Die kapasiteit van die omliggende sediment vir die berging van kernafval is deur die V S A se federale regering aangehaal as bewyse vir die lewensvatbaarheid om uitgeputte kernafval by die Yucca Berg Kernafval Repositorium te stoor 15 Gebruike voor ontdekking Wysig Die gebruik van uraan in die natuurlike oksiedvorm dateer ten minste uit die jaar 79 n C toe dit gebruik was vir die byvoeging van n gelerige kleur by keramiek verglasing 7 Geel glas met 1 uraanoksied is in 1912 gevind in n Romeinse villa op Kaap Posillopo in die Baai van Napels Italie deur R T Gunther van die Oxford Universiteit 16 In die beginjare van die Middeleeue was pikblende onttrek vanuit die Habsburg silwermyne in Joachimsthal Boheme nou Jachymov in die Tseggiese Republiek en gebruik as n kleurmiddel in die plaaslike glasvervaardigingsbedryf 17 In die vroee 19de eeu was die wereld se bekendste bronne van uraanerts eens hierdie myne Ontdekking Wysig Antoine Henri Becquerel het die verskynsel van radioaktiwiteit ontdek deur n fotografiese plaat aan uraan bloot te stel 1896 Die ontdekking van uraan kan toegeskryf word aan die Duitse chemikus Martin Heinrich Klaproth Terwyl hy te werk was in sy ekspertimentele laboratorium in Berlyn in 1789 was Klaproth in staat om n gelerige verbinding in neerslagvorm waarskynlik natriumdiuranaat te skei deur pikblende in salpetersuur op te los en die oplossing te neutraliseer met natriumhidroksied 17 Klaproth het die fout gemaak om aan te neem dat die geel stof n oksied van n onontdekte element was Hy het dit met houtskool verhit n swart poeier verkry en verneem die poeier is die nuut ontdekte metaal op sigself inteendeel daardie poeier was n oksied van uraan 17 18 Hy het die nuutontdekte element na die planeet Uranus vernoem wat William Herschel ag jaar vantevore ontdek het 19 In 1841 het Eugene Melchior Peligot n professor van Analitiese Chemie aan die Conservatoire National des Arts et Metiers Sentrale Skool van Kunste en Vervaardigings in Parys die eerste monster uraanmetaal geskei deur uraantetrachloried te verhit met kalium 17 20 In 1850 is die eerste kommersiele gebruik van uraan in glas ontwikkel deur Lloyd amp Summerfield van Birmingham Engeland Uraan was nie juis gevaarlik beskou gedurende die meeste van die 19de eeu nie wat tot baie gebruike van die element gelei het Een van daardie gebruike van die oksied was soos reeds genoem en nie meer n geheim nie die verkleuring van erdewerke en glas Antoine Henri Becquerel het in 1896 radioaktiwiteit ontdek deur uraan te gebruik 9 Becquerel het die ontdekking in Parys gemaak deur n monster uraansout K2UO2 SO4 2 bo op n fotografiese plaat te los wat nog nie blootgestel was nie Hy het opgemerk die plaat wat in n laai gele het het mistig geraak 21 Hy het beslis dat n vorm onsigbare lig of strale wat deur die uraan uitgestraal is het die plaat blootgestel Kernsplytingsnavorsing Wysig Enrico Fermi onder links en die res van die span wat die eerste volhoubare kunsmatige kettingreaksie geinisieer het 1942 n Span wat deur Enrico Fermi in 1934 gelei is het waargeneem dat uraan met neutrone gebombardeer die uitstraling van beta strale produseer elektrone of positrone sien betadeeltjie 22 Die spytingsproduk was eers verkeerdelik gesien as nuwe elemente met atoomgetalle 93 an 94 wat die Dekaan van die Fakulteit van Rome Orso Mario Corbino ausonium en hesperium onderskeidelik gedoop het 23 24 25 26 Die eksperimente wat gelei het tot die ontdekking van uraan se vermoe om te splyt uitmekaar te breek na ligter elemente en dan die bindingsenergie vry te stel was uitgevoer deur Otto Hahn en Fritz Strassmann 22 in Hahn se laboratorium in Berlyn Lise Meitner en haar familielid fisikus Otto Robert Frisch het in Febuarie 1939 die fisiese verduideliking daarvan gepubliseer en die proses kernsplyting benoem 27 Gou daarna het Fermi gepostuleer dat die kernsplyting van uraan dalk genoeg neutrone kan vrylaat om n kernreaksie te onderhou Sy hipotese is in 1939 bevestig en later is daar gevind dat n gemiddelde van 2 5 neutrone vrygestel word vir elke splyting van die skaars uraan isotoop uraan 235 22 Verdere werk het gevind dat die meer algemene uraan 238 isotoop kan getransmuteer word na plutonium wat soos uraan 235 ook splytbaar is deur termiese neutrone Hierdie ontdekkings het talle lande gelei om aan die werk te spring met die ontwikkeling van kernwapens en kernkrag Op 2 Desember 1942 deel van die Manhattan projek het n ander span wat gelei was deur Fermi die eerste kunsmatige self onderhoudende kettingreaksie Chicago Stapel 1 geinisieer In n laboratorium onder die pawiljoen van Staggveld by die Chicago Universiteit het hierdie span die regte toestande geskep vir so n reaksie deur 360 ton grafiet 53 ton uraanoksied en 5 5 ton uraanmetaal op te hoop 22 Bomme Wysig Die sampioenwolk oor Hiroshima na die werping van die uraangebaseerde atoombom met die bynaam Little Boy 1945 Twee hooftipes atoombomme was ontwikkel deur die V S A gedurende die Tweede Wereldoorlog n uraangebaseerde toestel kodenaam Little Boy met kernmateriaal van hoogs verrykte uraan en n plutoniumgebaseerde toestel sien Trinity kernwapentoets en Fat Man met plutonium afgelei vanaf uraan 238 Die eerste kernwapen wat in n oorlog gebruik was was die uraangebaseerde Little Boy toestel Dit was oor die Japannese stad Hiroshima op 6 Augustus 1945 gedetoneer Die ontploffing was ekwivalent aan 12 500 ton TNT waarvan die rukwind en termiese golf amper 50 000 geboue en 75 000 mense vernietig het 21 Aanvanklik was dit geglo dat uraan betreklik skaars is en dat kernvermeerdering voorkom kan word deur al die uraanvoorrade uit te koop maar in n dekade is groot uraanreserwes ontdek in baie plekke regoor die wereld 28 Reaktore Wysig Vier gloeilampe wat skyn met elektrisiteit opgewek vanaf die eerste kunsmatige elektrisiteitsproduserende kernreaktor Eksperimentele Kweekreaktor I 1951 Die X 10 Grafietreaktor by Oak Ridge Nasionale Laboratorium ORNL in Oak Ridge Tennessee voorheen bekend as die Clinton Stapel en X 10 Stapel was die wereld se tweede kunsmatige kenreaktor na Enrico Fermi se Chicago Stapel maar die eerste reaktor wat ontwerp was vir voortdurende bedryf Die Eksperimentele Kweekreaktor I by die Idaho Nasionale Laboratorium INL naby Arco Idaho het die eerste kernreaktor geword om elektrisiteit te produseer op 20 Desember 1951 Aanvanklik het hierdie reaktor vier 150 watt gloeilampe laat skyn maar verbeteringe het uiteindelik die reaktor in staat gestel om krag aan die hele fasiliteit te verskaf later was die hele dorp Arco se elektrisiteit voorsien deur kernkrag n eerste in die wereld 29 Die wereld se eerste kernkragsentrale op kommersiele skaal die Obninsk Kernkragsentale in die Sowjetunie het opwekking begin met reaktor AM 1 op 27 Junie 1954 Ander kernkragsentrales wat gevolg het was Sellafield in Engeland wat opwekking begin het op 17 Oktober 1956 30 en die Shippingport Atomiese Kragstasie in Pennsilvanie met bedryfstelling op 26 Mei 1985 Kernkrag was die eerste keer vir aandrywing gebruik deur n duikboot in die USS Nautilus SSN 571 in 1954 22 Kontaminasie en die Koue Oorlog nalatenskap Wysig Kernwapenvoorraad 1945 2014 Bogrondse kerntoetse deur die Sowjetunie en die V S A in die 1950 s en vroee 1960 s en deur Frankryk en Israel in die 1970 s en 1980 s 12 het beduidende hoeveelhede kernafval vanaf uraan dogterisotope regoor die wereld versprei 31 Addisionele afval en besoedeling het voorgekom vanaf verskeie kernongelukke 32 33 Uraanmynwerkers toon meer voorvalle van kanker n Oormatige risiko van longkanker tussen die Navajo uraanmynwerkers is gedokumenteer en skakel nou aan hul beroep 34 In die V S A is n wet die Bestraling Blootstelling Kompensasie Wet in 1990 deurgevoer wat vereis dat 100 000 vir medelye betaling aan uraanmyners met kanker of ander respiratoriese kwale betaal moet word 35 Gedurende die Koue Oorlog tussen die Sowjetunie en die V S A is enorme voorrade uraan bymekaargemaak en tienduisende kernwapens was geskep deur verrykte uraan en gemaakte plutonium vanaf uraan Sedert die ineenstorting van die Sowjetunie in 1991 word daar beraam dat ongeveer 540 ton hoogs verrykte wapens graaduraan genoeg om 40 000 kernplofkoppe te maak gestoor is in fasiliteite met dikwels onvoldoende bewaking in die Russiese Federasie en ander vorige Sowjetstate 10 Polisie in Asie Europa en Suid Amerika het ten minste in 16 gevalle vanaf 1993 tot 2005 gesmokkelde bomgraad uraan of plutoniumvragte onderskep die meeste afkomstig vanaf eens Sowjetbronne 10 vanaf 1993 tot 2005 het die V S A ongeveer 550 miljoen gespandeer vir die beveiliging van uraan en plutonium voorrade in Rusland 10 Hierdie geld was gebuik vir die verbetering en sekuriteitsverhoging by navorsing en stoorfasiliteite Die Scientific American het in Februarie 2006 gerapporteer dat sommige van hierdie fasiliteite se sekuriteit hewig vervalle kettingskakelomheinings beslaan Volgens n onderhoud in die artikel het een van hierdie fasiliteite monsters verrykte wapengraad uraan in n besemkas gestoor voor die verbeteringsprojek n ander het boekgehou van die kernplofkopvoorraad deur die bewaring van indekskaarte in n skoenboks 36 Voorkoms WysigBioties en abioties Wysig Uraniet ook bekend as pikblende is die mees algemene erts wat ontgin word vir die ekstrasie van uraan Uraan is n element wat natuurlik voorkom en gevind word in lae konsentrasies in alle rotse grond en water Uraan is ook die element met die hoogste atoomgetal wat natuurlik op die aarde voorkom in beduidende hoeveelhede en word altyd gevind in verbinding met ander elemente 7 Saam met ander elemente met hoer atoomgetalle as die van yster word dit net natuurlik gevorm in supernovas 37 Die verval van uraan torium en kalium 40 in die aardmantel word beskou as die hoofbron van hitte 38 39 wat die buitense kern n vloeistof hou en die mantel konveksie dryf wat op sy beurt weer plaattektoniek veroorsaak Uraan se gemiddelde konsentrasie in die Aarde se kors is afhangend van die bron 2 tot 4 dele per miljoen 8 12 of omtrent 40 keer meer volop as silwer 9 Daar word bereken dat die aarde se kors vanaf die oppervalk tot sowat 25 km afwaarts bevat 1017 kg uraan terwyl die oseaan dalk ongeveer 1013 kg kan bevat 8 Die konsentrasie van uraan in grond strek van 0 7 tot 11 dele per miljoen en tot 15 dele per miljoen in landbougrond weens die gebruik van fosfaat kunsmis en die konsentrasie in seewater is 3 dele per miljard 12 Uraan is meer oorvloedig as antimoon tin kadmium kwik of silwer en is omtrent so volop soos arseen of molibdeen 7 12 Uraan word gevind in honderde tipes minerale wat uraniniet die mees algemene uraanerts karnotiet autuniet uranofaan toberniet en koffiniet insluit 7 In uraanryke ertse kom beduidende hoeveelhede uraankonsentrasies voor soos fosfaatklipneerslae en minerale soos ligniet en monasietsande 7 dit word kommersieel herwin vanuit bronne met so min as 0 1 uraan 9 Citrobacter spesies kan uraankonsentrasies tot 300 keer hoer as die omliggende omgewing bevat Daar is bewys dat sommige bateriee soos S putrefaciens en G metallireducens uraan VI kan reduseer tot uraan IV 40 Sommige organismes soos die korsmos Trapelia involuta of mikroorganismes soos die bakterie Citrobacter kan konsentrasies uraan absorbeer tot 300 keer hoer as hul omgewing 41 Citrobacter spesies absorbeer uranielione wanneer gliserolfosfaat of ander soortgelyke organiese fosfate aan hulle gegee word Na een dag kan een gram bakteriee bekors word met nege gram uranielfosfaatkristalle dit skep die moontlikheid dat hierdie organismes in biogeneeskunde tot die onbesoedeling van uraan gekontamineerde water gebruik kan word 17 42 In die natuur vorm uraan VI n hoogs oplosbare karbonaat komplekse by hoe pH s basies Dit lei tot n verhoging in vervoerbaarheid en beskikbaarheid van uraan om vanaf kernafval na grond en ondergrondse water te beweeg wat kan lei tot gesondheidsgevare Dit is egter moeilik om uraan in die fosfaatvorm te presipiteer indien oortollige karbonaat teenwoordig is by n alkaliese pH Daar is gevind dat n Sphingomonas sp stam n hoe aktiwiteit alkaliese fosfatase kan uitdruk wat al toegepas is vir die biopresipitasie van uraan in uranielfosfaat spesies vanuit alkaliese oplossings Die presipitasie vermoe was verhoog deur die fosfatase proteien in E coli oormatig uit te druk 43 Plante absorbeer sommige uraan vanuit grond Droe gewig konsentrasies uraan in plante wissel van 5 tot 60 dele per miljard en as wat verkry word uit verbrande hout kan konsentrasies tot 4 dele per miljoen bevat 17 Droe gewig konsentrasies uraan in voedselplante is tipies laer met een tot twee mikrogram per dag wat ingeneem word deur dit wat mense eet 17 Produksie en ontginning Wysig Geelkoek is n gekonsentreerde mengsel uraanoksiedes wat verder verwerk word om suiwer uraan te onttrek Uraanproduksie wereldwyd het in 2006 39 655 ton behaal waarvan 25 ontgin is in Kanada Ander belangrike lande wat uraan myn is Australie 19 1 Kasakstan 13 3 Niger 8 7 Rusland 8 6 en Namibie 7 8 Uraanerts word gemyn met verskeie metodes oopgroef ondergronds in situ loging en deur boorgatmyne 5 Lae graad uraanerts wat ontgin is in 2006 bevat tipies 0 01 tot 0 25 uraanoksides Omvangryke ekstaksiemetodes moet toegepas word om metaal van die erts te skei 44 Hoe graad erts wat gevind word in die Athabasca Kom Saskatchewan Kanada kan tot 23 uraanoksiedes op n gemiddelde basis bevat 45 Uraanerts word verbrysel en verwerk tot n fyn poeier en dan geloog met of n suur of n alkali Die uitgeloogde produk word dan onderwerp aan verskeie stappe van presipitering oplosmiddel ekstraksie en ioonuitruiling Die mengsel wat verkry word genaamd geelkoek bevat ten minste 75 uraanoksides Geelkoek word dan gekalsineer om onsuiwerhede van te malingsproses te verwyder voor verdere verwerking 46 Kommersiele graad uraan kan geproduseer word deur die reduksie van uraanhaliede met n alkalimetaal of n alkali aard metaal 7 Uraanmetaal kan ook voorberei word deur elektoliese van KU5 of uraantetrafloried opgelos in n gesmelte kalsiumchloried en natriumchloried oplossing 7 Baie suiwer uraan word geproduseer deur die termiese ontbinding van uraanhaliedes in n warm filament 7 Bronne en reserwes Wysig Ekonomiese uraanbronne sal vir ongeveer 100 jaar teen die 2006 verbruikingstempo voortbestaan terwyl dit verwag word dat omtrent dubbel daardie hoeveelheid nog ontdek moet word Met herverwerking en herwinning kan hierdie reserwes n nog vir duisende jare lewer 47 Daar word beraam dat 5 5 miljoen ton uraanerts reserwes ekonomies ontginbaar is teen US 59 lb 47 terwyl 35 miljoen ton geklassifiseer word as mineraalhulpbonne redelike vooruitsigte vir uiteindelike ekonomiese ontginning 48 n Beraamde bykomende 4 6 miljard ton uraan word gevind in seewater Japannese wetenskaplikes in die 1980 s het bewys dat die ekstraksie van uraan vanuit seewater deur ioonuitruiling te gebruik is tegnies moontlik 49 50 Uraaneksplorasie neem toe met US 200 miljoen wat wereldwyd gespandeer is in 2005 n 54 toename op die vorige jaar 48 Hierdie tendens het deur 2006 aangehou toe eksplorasie uitgawes tot oor 774 miljoen opgeskiet het n toename oor 250 in vergelyking met 2004 Australie besit 23 van die wereld se uraanreserwes 51 en die wereld se grootste enkele uraanneerslag is gelee by die Olimpiese Dam Myn in Suid Australie 52 Sommige kernbrandstowwe word verkry vanuit gedemonteerde kernwapens 53 Voorraad Wysig Uraan produksie in 2005 In 2005 het sewentien lande gekonsentreerde uraanoksiedes geproduseer met Kanada 27 9 van die wereld se produksie en Australie 22 8 die wereld se grootste produsente asook Kasakstan 10 5 Rusland 8 0 Namibie 7 5 Niger 7 4 Usbekistan 5 5 die V S A 2 5 Argentinie 2 1 Oekraine 1 9 en China 1 7 wat noemenswaardige hoeveelhede produseer 54 In Kasakstan neem produksie gedurig toe en mag selfs die wereld se grootse produsent raak met n verwagte produksie van 12 826 ton vir 2009 in vergelyking met Kanada en Australie se verwagte 11 100 en 9 430 ton onderskeidelik 55 56 Daar word geglo dat die beslissende hoeveelheid beskikbare uraan genoegsaam vir ten minste die volgende 85 jaar sal wees 48 alhoewel sommige studies toon dat onderbelegging in die laat twintigste eeu voorsieningsprobleme in die 21ste eeu kan veroorsaak 57 Kenneth S Deffeyes en Ian D MacGregor het dit uitgewys dat uraanneerslae blykbaar in n logaritmiese normale verspreiding voorkom Daar is n 300 voudige toename in die herwinbare uraanhoeveelhede vir elke tienvoudige toename in die ertsgraad 58 Dit beteken dat daar is min hoegraad erts beskikbaar teenoor direk eweredige laegraad erts in n meerdere mate Verbindings WysigOksidasietoestande en oksiedes Wysig Oksiedes Wysig Triuraan oktaoksied voorgestel in die diagram en uraandioksied is die mees algemene uraanoksiedes Gekalsineerde uraan geelkoek wat geproduseer word in baie groot meule bevat n verspreiding van uraanoksied spesies in die verskeie vorme wat strek van die mees tot minste geoksideerde toestand Deeltjies met kort residensie tye in n kalsieeroond sal gewoonlik minder geoksideerd wees as die met langer residensie tye of deeltjies wat in die skoorsteenskroptoring herwin word Daar word gewoonlik na n uraaninhoud van U3O8 verwys wat dateer uit die dae van die Manhattan projek toe U3O8 gebruik was as n analitiese chemie standaard vir verslae Fase verhoudings in die uraan suurstof stelsel is redelik kompleks Die mees geoksideerde toestand van uraan is uraan IV en uraan VI asook hul twee ooreenstemmende oksiedes wat onderskeidelik uraandioksied UO2 en uraantrioksied UO3 heet 59 Ander uraanoksides soos uraanmonoksied UO en uraanperoksied UO4 2H2O bestaan ook Die mees algemene vorm van uraanoksied is triuraanoktaoksied U3O8 en UO2 60 Albei oksied vorme is vastestowwe met n lae oplosbaarheid in water en relatief stabiel oor n wye reeks omgewingstoestande Triuraanoktaoksied is afhangende van die toestande die mees stabiele vorm van uraan en is ook die mees algemene vorm wat in die natuur voorkom Uraandioksied is die vorm wat algemeen as n kernreaktorbrandstof gebruik word 60 By omgewingstemperature sal UO2 geleidelik omskakel in U3O8 Die stabiliteit van uraanoksides maak dit die voorkeur vorm vir uraanberging en verwydering 60 Waterige chemie Wysig Soute van al vier uraan oksidasie toestande is wateroplosbaar en word bestudeer in waterige oplossings Die oksidasie toestande is U3 rooi U4 groen UO2 onstabiel en UO22 geel 61 n Klein hoeveelheid vastestof en halfmetaalverbindings soos UO en US bestaan vir die oksidasietoestand uraan II maar geen eenvoudige ione kom voor nie Ione van U3 maak waterstof vry vanuit water en word dus baie onstabiel beskou Die UO22 ioon verteenwoordig die uraan VI toestand en kom voor in verbindings soos uranielkarbonaat uranielchloried en uranielsulfaat UO22 vorm ook chemiese komplekse met verskeie organiese chelaat agente soos uranielasetaat die mees algemene vorm 61 Kabonate Wysig Die Pourbaix diagram vir uraan in n nie kompleksvormende waterige medium byvoorbeeld perchloorsuur natriumhidroksied 62 Die Pourbaix diagram vir uraan in n karbonaat oplossing 62 Die wisselwerking van kabonaat anione met uraan VI veroorsaak dat die Pourbaix diagram noemenswaardig gewysig word indien die medium vanaf n wateroplossing na oplossing wat karbonaat bevat verander Terwyl die meerderheid karbonate onoplosbaar in water is is uraankarbonate soms wel oplosbaar in water Dit is so omdat n U VI katioon kan bind met twee terminale oksides en drie of meer karbonate om n anioonkompleks te vorm Die effek van pH Wysig n Diagram wat die relatiewe konsentrasies van verskillende chemiese vorme van uraan toon in n nie kompleksvormende waterige medium byvoorbeeld perchloorsuur natriumhidroksied 62 n Diagram wat die relatiewe konsentrasies van verskillende chemiese vorme van uraan toon in n waterige kabonaat oplossing 62 Die uraanfraksie diagramme met die teenwoordigheid van karbonate illustreer dit verder wanneer die pH van n uraan VI oplossing vermeerder sal die uraan omgeskakel word na n hidreerde uraanoksied hidroksied en by hoe pH s sal dit n anioniese hidroksiedkompleks word Wanneer karbonate bygevoeg word sal uraan omgeskakel word na n reeks karbonaatkomplekse indien die pH vermeerder Een gevolg van hierdie reaksies is die toename in oplosbaarheid van uraan in n pH reeks van 6 tot 8 n verskynsel wat n invloed het op die langtermyn stabiliteit van uitgeputte uraandioksied kernbrandstowwe Hidrides karbides en nitrides Wysig Uraan wat verhit word in die teenwoordigheid van waterstof by n temperatuur van 250 tot 300 C reageer om uraanhidried te vorm By hoer temperature sal die waterstof omkeerbaar verwyder word Hierdie eienskap van uraan maak uraanhidrides geskik as n begin materiaal vir die vervaardiging van reaktiewe met verskeie ander karbiede nitriede en haliedeverbindings 63 Twee kristal veranderinge van uraanhidried betaan n a vorm verkrygbaar teen lae temperature en n b vorm wat geskep word teen temperature bo 250 C 63 Albei uraankarbides en uraannitrides is realtief inerte halfmetaalagtige verbindings wat minimaal oplosbaar is in sure reageer met water en kan verbrand in lug om U3O8 te vorm 63 Karbides van uraan sluit uraanmonokarbied UC uraandikarbied UC 2 en diuraantrikarbied U2C3 in UC en UC2 word gevorm deur koolstof by gesmelte uraan te voeg of deur die uraanmetaal aan koolstofmonoksied by hoe termperature bloot te stel U2C3 is stabiel onder 1 800 C en word voorberei deur n verhitte mengsel UC en UC2 onder meganiese spanning te onderwerp 64 Uraannitrides word verkry deur die direkte blootstelling van die metaal aan stikstof insluitend unraanmononitried UN uraandinitried UN2 en diuraantrinitried U2N3 64 Halides Wysig Uraanheksafluoried is die voermateriaal wat gebruik word om uraan 235 vanuit natuurlike uraan te skei Alle uraanfluoride word geskep deur uraantetrafluoried te gebruik UF4 UF4 word self voorberei deur die hidrofluorinering van uraandioksied 63 Die reduksie van UF4 met waterstof teen n temperatuur van 1 000 C produseer uraantrifluoried UF3 Onder die korrekte toestande temperatuur en druk sal die reaksie tussen soliede UF4 met uraanheksafluoriedgas UF6 intermediere fluorides vorm soos U2F9 U4F17 en UF5 63 Teen kamertemperatuur het UF6 n hoe dampdruk wat dit gebruiklik maak in die gasdiffusie proses om uraan 235 vanuit die meer algemene uraan 238 isotoop te skei Hierdie verbinding kan voorberei word uit uraandioksied en uraanhidried deur die volgende proses 63 UO2 4 HF UF4 2 H2O 500 C endotermies UF4 F2 UF6 350 C endotermies Die gevormde UF6 n wit vastestof is hoogs reaktief by fluorinering sublimeer maklik vorm byna n perfekte gasdamp en is die mees vlugtige verbinding van uraan wat bestaan 63 Een metode om uraantetrachloried UCl4 te berei is deur die reaksie tussen chloor met uraanmetaal of uraanhidried Die reduksie van UCl4 in die teenwoordigheid van waterstof produseer uraantricloried UCl3 terwyl hoer uraanchlorides geproduseer word deur die reaksie met bykomstige chloor 63 Alle uraanchlorides reageer met water en lug Bromides en jodides van uraan word gevorm deur die direkte reaksie van broom en jodium ooreenkomstig of deur die addisie van UH3 by die betrokke element se sure 63 Bekende voorbeelde sluit die volgende in UBr3 UBr4 UI3 en UI4 Uraanoksihalides is wateroplosbaar en sluit UO2F2 UOCl2 UO2Cl2 en UO2Br2 in Die stabiliteit van oksihalides verminder soos die atoommassa van die halide komponent toeneem 63 Minerale WysigUraniniet AutunietVerwysings Wysig The Chemistry of the Actinide and Transactinide Elements Third Edition by L R Morss N M Edelstein J Fuger eds Netherlands Springer 2006 Hoffman D C Lawrence F O Mewherter J L Rourke F M 1971 Detection of Plutonium 244 in Nature Nature 234 132 134 doi 10 1038 234132a0 Health Concerns about Military Use of Depleted Uranium PDF in Engels Geargiveer PDF vanaf die oorspronklike op 7 Februarie 2012 WWW Table of Radioactive Isotopes 5 0 5 1 5 2 5 3 Emsley 2001 p 479 U S to pump money into nuke stockpile increase security RIA Novosti February 18 2010 7 00 7 01 7 02 7 03 7 04 7 05 7 06 7 07 7 08 7 09 7 10 7 11 7 12 7 13 7 14 7 15 C R Hammond 2000 The Elements in Handbook of Chemistry and Physics 81st edition PDF CRC press ISBN 0 8493 0481 4 8 0 8 1 8 2 8 3 8 4 Uranium The McGraw Hill Science and Technology Encyclopedia 5th edition The McGraw Hill Companies Inc 9 0 9 1 9 2 9 3 uranium Columbia Electronic Encyclopedia 6th Edition Columbia University Press 10 0 10 1 10 2 10 3 10 4 uranium Encyclopedia of Espionage Intelligence and Security The Gale Group Inc A D Rollett 2008 Applications of Texture Analysis John Wiley and Sons p 108 ISBN 0 470 40835 9 12 0 12 1 12 2 12 3 12 4 Emsley 2001 p 480 Nuclear Weapon Design in Engels Federation of American Scientists 1998 Geargiveer vanaf die oorspronklike op 28 Augustus 2016 Besoek op 19 Februarie 2007 Dial R for radioactive 12 July 1997 New Scientist in Engels Newscientist com Geargiveer vanaf die oorspronklike op 15 Augustus 2014 Besoek op 12 September 2008 15 0 15 1 Oklo Natural Nuclear Reactors Office of Civilian Radioactive Waste Management Besoek op 28 Junie 2006 Emsley 2001 p 482 17 0 17 1 17 2 17 3 17 4 17 5 17 6 Emsley 2001 p 477 M H Klaproth 1789 Chemische Untersuchung des Uranits einer neuentdeckten metallischen Substanz Chemische Annalen 2 387 403 Uranium The American Heritage Dictionary of the English Language 4th edition Houghton Mifflin Company E M Peligot 1842 Recherches Sur L Uranium Annales de chimie et de physique 5 5 5 47 21 0 21 1 Emsley 2001 p 478 22 0 22 1 22 2 22 3 22 4 Seaborg 1968 p 773 Fermi Enrico December 12 1938 Artificial radioactivity produced by neutron bombardment Nobel Lecture PDF Royal Swedish Academy of Sciences De Gregorio A 2003 A Historical Note About How the Property was Discovered that Hydrogenated Substances Increase the Radioactivity Induced by Neutrons physics hist ph Nigro M 2004 Hahn Meitner e la teoria della fissione PDF Besoek op 2009 05 05 CS1 maint extra punctuation link AS1 onderhoud meer as een naam authors list link Peter van der Krogt Elementymology amp Elements Multidict in Nederlands Geargiveer vanaf die oorspronklike op 9 Desember 2009 Besoek op 5 Mei 2009 L Meitner O Frisch 1939 Disintegration of Uranium by Neutrons a New Type of Nuclear Reaction Nature 143 239 240 doi 10 1038 224466a0 J E Helmreich Gathering Rare Ores The Diplomacy of Uranium Acquisition 1943 1954 Princeton UP 1986 ch 10 History and Success of Argonne National Laboratory Part 1 U S Department of Energy Argonne National Laboratory 1998 Geargiveer vanaf die oorspronklike op 2006 09 26 Besoek op 2007 01 28 1956 Queen switches on nuclear power BBC news in Engels 17 Oktober 1956 Geargiveer vanaf die oorspronklike op 27 Oktober 2019 Besoek op 28 Junie 2006 T Warneke I W Croudace P E Warwick R N Taylor 2002 A new ground level fallout record of uranium and plutonium isotopes for northern temperate latitudes Earth and Planetary Science Letters 203 3 4 1047 1057 doi 10 1016 S0012 821X 02 00930 5 AS1 onderhoud meer as een naam authors list link Newtan Samuel Upton 2007 Nuclear War 1 and Other Major Nuclear Disasters of the 20th Century AuthorHouse The Worst Nuclear Disasters Geargiveer vanaf die oorspronklike op 26 Augustus 2013 Besoek op 22 April 2010 Gilliland Frank D MD Hunt William C MS Pardilla Marla MSW MPH Key Charles R MD PhD March 2000 Uranium Mining and Lung Cancer Among Navajo Men in New Mexico and Arizona 1969 to 1993 New England Journal of Medicine 42 3 278 283 AS1 onderhoud meer as een naam authors list link The History of Uranium Mining and the Navajo People Glaser Alexander and von Hippel Frank N Thwarting Nuclear Terrorism Scientific American Magazine February 2006 WorldBook NASA Supernova in Engels NASA Geargiveer vanaf die oorspronklike op 23 November 2010 Besoek op 19 Februarie 2007 Biever Celeste 27 July 2005 First measurements of Earth s core radioactivity New Scientist Cite journal requires journal help Potassium 40 heats up Earth s core physicsweb 7 May 2003 Besoek op 2007 01 14 Min M Xu H Chen J Fayek M 2005 Evidence of uranium biomineralization in sandstone hosted roll front uranium deposits northwestern China Ore Geology Reviews 26 198 doi 10 1016 j oregeorev 2004 10 003 Emsley 2001 pp 476 and 482 L E Macaskie R M Empson A K Cheetham C P Grey A J Skarnulis 1992 Uranium bioaccumulation by a Citrobacter sp as a result of enzymically mediated growth of polycrystalline HUO2PO4 Science 257 5071 782 784 doi 10 1126 science 1496397 PMID 1496397 AS1 onderhoud meer as een naam authors list link K S Nilgiriwala A Alahari A S Rao amp S K Apte 2008 Cloning and overexpression of an alkaline phosphatase PhoK from Sphingomonas sp BSAR 1 for uranium bioprecipitation from alkaline solutions Applied and Environmental Microbiology 74 17 5516 5523 doi 10 1128 AEM 00107 08 ISSN 1098 5336 PMC 2546639 PMID 18641147 Onbekende parameter month geignoreer help AS1 onderhoud meer as een naam authors list link Seaborg 1968 p 774 Athabasca Basin Saskatchewan in Engels Geargiveer vanaf die oorspronklike op 23 Mei 2020 Besoek op 4 September 2009 C K Gupta T K Mukherjee 1990 Hydrometallurgy in extraction processes Volume 1 CRC Press pp 74 75 ISBN 0 8493 6804 9 47 0 47 1 Exploration drives uranium resources up 17 in Engels World nuclear news org Geargiveer vanaf die oorspronklike op 26 Mei 2020 Besoek op 12 September 2008 48 0 48 1 48 2 Global Uranium Resources to Meet Projected Demand in Engels International Atomic Energy Agency 2006 Geargiveer vanaf die oorspronklike op 5 Augustus 2014 Besoek op 29 Maart 2007 Uranium recovery from Seawater Japan Atomic Energy Research Institute 23 Augustus 1999 Geargiveer vanaf die oorspronklike op 7 Maart 2016 Besoek op 3 September 2008 How long will nuclear energy last in Engels 12 Februarie 1996 Geargiveer vanaf die oorspronklike op 23 Mei 2020 Besoek op 29 Maart 2007 Supply of Uranium in Engels Geargiveer vanaf die oorspronklike op 12 Februarie 2013 Uranium Mining and Processing in South Australia in Engels South Australian Chamber of Mines and Energy 2002 Geargiveer vanaf die oorspronklike op 23 Mei 2020 Besoek op 14 Januarie 2007 Military Warheads as a Source of Nuclear Fuel World Uranium Production in Engels UxC Consulting Company LLC Geargiveer vanaf die oorspronklike op 6 Maart 2016 Besoek op 11 Februarie 2007 Posted by Mithridates July 24 2008 Page F30 Kazakhstan to surpass Canada as the world s largest producer of uranium by last year 2009 Mithridates blogspot com Besoek op 2008 09 12 ZAMAN GAZETESI Internetin Ilk Turk Gazetesi Kazakistan uranyum uretimini artiracak lt Bot generated title gt in Turks Zaman com tr Besoek op 2008 09 12 Lack of fuel may limit U S nuclear power expansion in Engels Massachusetts Institute of Technology 21 Maart 2007 Geargiveer vanaf die oorspronklike op 5 November 2013 Besoek op 29 Maart 2007 Kenneth S Deffeyes and Ian D MacGregor 1980 01 01 World Uranium Resources Scientific American p 66 Besoek op 2008 04 21 Seaborg 1968 p 779 60 0 60 1 60 2 Chemical Forms of Uranium Argonne National Laboratory Besoek op 2007 02 18 61 0 61 1 Seaborg 1968 p 778 62 0 62 1 62 2 62 3 Ignasi Puigdomenech Hydra Medusa Chemical Equilibrium Database and Plotting Software 2004 KTH Royal Institute of Technology freely downloadable software at 1 Geargiveer 29 September 2007 op Wayback Machine 63 0 63 1 63 2 63 3 63 4 63 5 63 6 63 7 63 8 63 9 Seaborg 1968 p 782 64 0 64 1 Seaborg 1968 p 780 Bronne WysigVolledige bronnelys inligting vir werke aangehaal Emsley John 2001 Uranium Nature s Building Blocks An A to Z Guide to the Elements Oxford Oxford University Press pp 476 482 ISBN 0 19 850340 7 Seaborg Glenn T 1968 Uranium The Encyclopedia of the Chemical Elements Skokie Illinois Reinhold Book Corporation pp 773 786 LCCCN 68 29938 Eksterne skakels WysigWikimedia Commons bevat media in verband met Uraan Sien uraan in Wiktionary die vrye woordeboek ATSDR Case Studies in Environmental Medicine Uranium Toxicity U S Department of Health and Human Services Public Health Statement for Uranium CDC Uranium Resources and Nuclear Energy Geargiveer 6 Mei 2013 op Wayback Machine U S EPA Radiation Information for Uranium What is Uranium from World Nuclear Association Nuclear fuel data and analysis from the U S Energy Information Administration Current market price of uranium World Uranium deposit maps Geargiveer 9 April 2005 op Wayback Machine Annotated bibliography for uranium from the Alsos Digital Library Geargiveer 14 Desember 2005 op Wayback Machine NLM Hazardous Substances Databank Uranium Radioactive Pac Man molecule chews up uranium contamination earth 17 January 2008 New Scientist Environment Mining Uranium at Namibia s Langer Heinrich Mine Geargiveer 21 Februarie 2014 op Wayback Machine Uranium futures market World Nuclear News webelements com Uraan H HeLi Be B C N O F NeNa Mg Al Si P S Cl ArK Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br KrRb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I XeCs Ba La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At RnFr Ra Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr Rf Db Sg Bh Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts OgAlkalimetale Aardalkalimetale Lantaniede Aktiniede Oorgangsmetale Hoofgroepmetale Metalloide Niemetale Halogene Edelgasse Chemie onbekend Ontsluit van https af wikipedia org w index php title Uraan amp ol,