fbpx
Wikipedia

Golffunksie

In kwantumfisika is 'n golffunksie 'n wiskundige beskrywing van die kwantumtoestand van 'n geïsoleerde kwantumsisteem. Die golffunksie is 'n komplekswaardige waarskynlikheidsamplitude, en die waarskynlikhede vir die moontlike resultate van metings wat op die stelsel gedoen is kan daaruit afgelei word. Die mees algemene simbole vir 'n golffunksie is die Griekse letters ψ en Ψ (onderskeidelik kleinletter en hoofletter psi).

Vergelyking van klassieke en kwantumharmoniese ossillator-opvattings vir 'n enkele spinlose deeltjie. Die twee prosesse verskil baie. Die klassieke proses (A & B) word voorgestel as die beweging van 'n deeltjie heen en weer in 'n baan. Die kwantumproses (C – H) het nie so 'n baan nie. Dit word eerder as 'n golf voorgestel; hier vertoon die vertikale as die werklike deel (blou) en denkbeeldige deel (rooi) van die golffunksie. Panele (C – F) toon vier verskillende staande golf-oplossings van die Schrödinger-vergelyking. Panele (G – H) toon verder twee verskillende golffunksies wat oplossings van die Schrödinger-vergelyking is, wat nie staande golwe is nie.

Grade van vryheid

Die golffunksie is 'n funksie van die grade van vryheid[Nota 1] wat ooreenstem met 'n maksimum stel kommutatiewe "waarneembare".[Nota 2] Sodra so 'n verteenwoordiging gekies is, kan die golffunksie afgelei word van die kwantumtoestand.

Vir 'n gegewe stelsel is die keuse van die grade van vryheid nie uniek nie, en die domein van die golffunksie is ook nie uniek nie. Dit kan byvoorbeeld beskou word as 'n funksie van al die posisie-koördinate van die deeltjies oor 'n posisie-ruimte, of die momenta van al die deeltjies oor 'n momentumruimte. Die twee word deur 'n Fourier-transform verwant. Sommige deeltjies, soos elektrone en fotone, het 'n spin-getal wat nie nul is nie, en die golffunksie vir sulke deeltjies bevat spin as 'n intrinsieke, diskrete graad van vryheid. Wanneer 'n stelsel interne grade van vryheid het, word die golffunksie 'n komplekse getal toegeken vir elke moontlike waarde van die diskrete grade van vryheid.

Die superposisiebeginsel

Volgens die superposisiebeginsel[Nota 3] van die kwantummeganika kan golffunksies bymekaar gevoeg word en vermenigvuldig word met komplekse getalle om nuwe golffunksies te vorm en 'n Hilbert-ruimte te vorm. Die innerproduk van twee golffunksies is 'n maatstaf vir die oorvleueling tussen die ooreenstemmende fisiese toestande, en word gebruik in die fundamentele waarskynlikheidsinterpretasie van die kwantummeganika, die Born-reël.[Nota 4] Die Schrödinger-vergelyking bepaal hoe golffunksies oor tyd ontwikkel. 'n Golffunksie tree kwalitatief op net soos ander golwe, soos watergolwe of golwe in 'n tou, omdat die Schrödinger-vergelyking wiskundig 'n tipe golfvergelyking is. Dit verklaar die naam "golffunksie" en gee aanleiding tot die konsep van golf-deeltjie-dualiteit.[Nota 5] Die golffunksie in die kwantummeganika beskryf egter 'n soort fisiese verskynsel, wat steeds oop is vir verskillende interpretasies, wat fundamenteel verskil van die van klassieke meganiese golwe (bv. seegolwe).[1][2][3][4][5][6]

Born se interpretasie

In Max Born se statistiese interpretasie in nie-relativistiese kwantummeganika,[7][8] is die kwadraatmodulus van die golffunksie, |ψ|2 , 'n reële getal wat geïnterpreteer word as die waarskynlikheidsdigtheid van die meting van 'n deeltjie in 'n gegewe plek - of met 'n gegewe momentum - op 'n gegewe tydstip. Die integraal van hierdie hoeveelheid, oor al die grade van vryheid van die stelsel, moet 1 wees volgens die waarskynlikheidsinterpretasie. Hierdie algemene vereiste waaraan 'n golffunksie moet voldoen, word die normaliseringstoestand genoem.

Aangesien die golffunksie 'n komplekse waarde het, kan slegs die relatiewe fase en relatiewe grootte gemeet word. Die twee waardes in isolasie vertel niks oor die groottes of rigtings van meetbare waarneembare nie. 'n Mens moet kwantumoperateurs, wie se eigenwaardes ooreenstem met stelle moontlike resultate van metings, op die golffunksie ψ toepas en die statistiese verspreidings vir meetbare hoeveelhede bereken.

Ontologie

Of die golffunksie werklik bestaan, en wat dit voorstel, is belangrike vrae in die interpretasie van kwantummeganika. Baie bekende natuurkundiges het al oor hierdie probleem gewonder, soos Schrödinger, Einstein en Bohr. Sommige pleit vir formulerings of variante van die Kopenhagen-interpretasie (bv. Bohr, Wigner en von Neumann), terwyl ander, soos Wheeler of Jaynes, die meer klassieke benadering volg[9] en die golffunksie beskou as inligting in die gedagtes van die waarnemer, dws. 'n mate van ons kennis van die werklikheid. Sommige, waaronder Schrödinger, Bohm en Everett en ander, het aangevoer dat die golffunksie 'n objektiewe, fisiese bestaan moet hê. Einstein het gedink dat 'n volledige beskrywing van die fisiese werklikheid direk na die fisiese ruimte en tyd moet verwys, anders as die golffunksie, wat na 'n abstrakte wiskundige ruimte verwys.[10]

Bronne

  • Born, M. (1926a). "Zur Quantenmechanik der Stoßvorgange". Z. Phys. (in Duits). 37 (12): 863–867. Bibcode:1926ZPhy...37..863B. doi:10.1007/bf01397477. S2CID 119896026.
  • Born, M. (1926b). "Zur Quantenmechanik der Stoßvorgange". Z. Phys. (in Duits). 38 (11–12): 803–827. Bibcode:1926ZPhy...38..803B. doi:10.1007/bf01397184. S2CID 126244962.
  • Einstein, A. (1905). "Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt". Annalen der Physik (in Duits). 17 (6): 132–148. Bibcode:1905AnP...322..132E. doi:10.1002/andp.19053220607.
  • Heisenberg, W. (1958). Physics and Philosophy: the Revolution in Modern Science (in Engels). New York: Harper & Row.
  • Jaynes, E. T. (2003). Larry, G. (red.). Probability Theory: The Logic of Science (in Engels). Cambridge University Press. ISBN 978-0-521 59271-0.
  • Murdoch, D. (1987). Niels Bohr's Philosophy of Physics (in Engels). Cambridge UK: Cambridge University Press. ISBN 978-0-521-33320-7.
  • de Broglie, L. (1923). "Radiations—Ondes et quanta" (PDF). Comptes Rendus (in Frans). 177: 507–510, 548, 630.
  • Landau, L.D.; Lifshitz, E. M. (1977). Quantum Mechanics: Non-Relativistic Theory (in Engels). Vol. 3 (3de uitg.). Pergamon Press. ISBN 978-0-08-020940-1. |volume= has extra text (help)
  • Newton, R.G. (2002). Quantum Physics: a Text for Graduate Student (in Engels). New York: Springer. ISBN 978-0-387-95473-8.

Aantekeninge

  1. Die aantal onafhanklike parameters wat die konfigurasie of toestand van 'n voorwerp definieer.
  2. 'n Fisiese hoeveelheid wat gemeet kan word.
  3. Basies, vir alle lineêre stelsels, is die nettoresultaat wat deur twee of meer aksies veroorsaak word, die som van die resultate wat elke aksie afsonderlik sou veroorsaak het.
  4. In sy eenvoudigste vorm stel dit voor dat die waarskynlikheidsdigtheid om 'n deeltjie op 'n gegewe punt te vind, wanneer dit gemeet is, proporsioneel is aan die kwadraat van die grootte van die deeltjie se golffunksie op daardie punt.
  5. Dit gee uitdrukking aan die onvermoë van die klassieke begrippe "deeltjie" of "golf" om die gedrag van voorwerpe op die kwantumskaal volledig te beskryf.

Verwysings

Golffunksie
golffunksie, kwantumfisika, golffunksie, wiskundige, beskrywing, kwantumtoestand, geïsoleerde, kwantumsisteem, golffunksie, komplekswaardige, waarskynlikheidsamplitude, waarskynlikhede, moontlike, resultate, metings, stelsel, gedoen, daaruit, afgelei, word, me. In kwantumfisika is n golffunksie n wiskundige beskrywing van die kwantumtoestand van n geisoleerde kwantumsisteem Die golffunksie is n komplekswaardige waarskynlikheidsamplitude en die waarskynlikhede vir die moontlike resultate van metings wat op die stelsel gedoen is kan daaruit afgelei word Die mees algemene simbole vir n golffunksie is die Griekse letters ps en PS onderskeidelik kleinletter en hoofletter psi Vergelyking van klassieke en kwantumharmoniese ossillator opvattings vir n enkele spinlose deeltjie Die twee prosesse verskil baie Die klassieke proses A amp B word voorgestel as die beweging van n deeltjie heen en weer in n baan Die kwantumproses C H het nie so n baan nie Dit word eerder as n golf voorgestel hier vertoon die vertikale as die werklike deel blou en denkbeeldige deel rooi van die golffunksie Panele C F toon vier verskillende staande golf oplossings van die Schrodinger vergelyking Panele G H toon verder twee verskillende golffunksies wat oplossings van die Schrodinger vergelyking is wat nie staande golwe is nie Inhoud 1 Grade van vryheid 2 Die superposisiebeginsel 3 Born se interpretasie 4 Ontologie 5 Bronne 6 Aantekeninge 7 VerwysingsGrade van vryheid WysigDie golffunksie is n funksie van die grade van vryheid Nota 1 wat ooreenstem met n maksimum stel kommutatiewe waarneembare Nota 2 Sodra so n verteenwoordiging gekies is kan die golffunksie afgelei word van die kwantumtoestand Vir n gegewe stelsel is die keuse van die grade van vryheid nie uniek nie en die domein van die golffunksie is ook nie uniek nie Dit kan byvoorbeeld beskou word as n funksie van al die posisie koordinate van die deeltjies oor n posisie ruimte of die momenta van al die deeltjies oor n momentumruimte Die twee word deur n Fourier transform verwant Sommige deeltjies soos elektrone en fotone het n spin getal wat nie nul is nie en die golffunksie vir sulke deeltjies bevat spin as n intrinsieke diskrete graad van vryheid Wanneer n stelsel interne grade van vryheid het word die golffunksie n komplekse getal toegeken vir elke moontlike waarde van die diskrete grade van vryheid Die superposisiebeginsel WysigVolgens die superposisiebeginsel Nota 3 van die kwantummeganika kan golffunksies bymekaar gevoeg word en vermenigvuldig word met komplekse getalle om nuwe golffunksies te vorm en n Hilbert ruimte te vorm Die innerproduk van twee golffunksies is n maatstaf vir die oorvleueling tussen die ooreenstemmende fisiese toestande en word gebruik in die fundamentele waarskynlikheidsinterpretasie van die kwantummeganika die Born reel Nota 4 Die Schrodinger vergelyking bepaal hoe golffunksies oor tyd ontwikkel n Golffunksie tree kwalitatief op net soos ander golwe soos watergolwe of golwe in n tou omdat die Schrodinger vergelyking wiskundig n tipe golfvergelyking is Dit verklaar die naam golffunksie en gee aanleiding tot die konsep van golf deeltjie dualiteit Nota 5 Die golffunksie in die kwantummeganika beskryf egter n soort fisiese verskynsel wat steeds oop is vir verskillende interpretasies wat fundamenteel verskil van die van klassieke meganiese golwe bv seegolwe 1 2 3 4 5 6 Born se interpretasie WysigIn Max Born se statistiese interpretasie in nie relativistiese kwantummeganika 7 8 is die kwadraatmodulus van die golffunksie ps 2 n reele getal wat geinterpreteer word as die waarskynlikheidsdigtheid van die meting van n deeltjie in n gegewe plek of met n gegewe momentum op n gegewe tydstip Die integraal van hierdie hoeveelheid oor al die grade van vryheid van die stelsel moet 1 wees volgens die waarskynlikheidsinterpretasie Hierdie algemene vereiste waaraan n golffunksie moet voldoen word die normaliseringstoestand genoem Aangesien die golffunksie n komplekse waarde het kan slegs die relatiewe fase en relatiewe grootte gemeet word Die twee waardes in isolasie vertel niks oor die groottes of rigtings van meetbare waarneembare nie n Mens moet kwantumoperateurs wie se eigenwaardes ooreenstem met stelle moontlike resultate van metings op die golffunksie ps toepas en die statistiese verspreidings vir meetbare hoeveelhede bereken Ontologie WysigOf die golffunksie werklik bestaan en wat dit voorstel is belangrike vrae in die interpretasie van kwantummeganika Baie bekende natuurkundiges het al oor hierdie probleem gewonder soos Schrodinger Einstein en Bohr Sommige pleit vir formulerings of variante van die Kopenhagen interpretasie bv Bohr Wigner en von Neumann terwyl ander soos Wheeler of Jaynes die meer klassieke benadering volg 9 en die golffunksie beskou as inligting in die gedagtes van die waarnemer dws n mate van ons kennis van die werklikheid Sommige waaronder Schrodinger Bohm en Everett en ander het aangevoer dat die golffunksie n objektiewe fisiese bestaan moet he Einstein het gedink dat n volledige beskrywing van die fisiese werklikheid direk na die fisiese ruimte en tyd moet verwys anders as die golffunksie wat na n abstrakte wiskundige ruimte verwys 10 Bronne WysigBorn M 1926a Zur Quantenmechanik der Stossvorgange Z Phys in Duits 37 12 863 867 Bibcode 1926ZPhy 37 863B doi 10 1007 bf01397477 S2CID 119896026 Born M 1926b Zur Quantenmechanik der Stossvorgange Z Phys in Duits 38 11 12 803 827 Bibcode 1926ZPhy 38 803B doi 10 1007 bf01397184 S2CID 126244962 Einstein A 1905 Uber einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt Annalen der Physik in Duits 17 6 132 148 Bibcode 1905AnP 322 132E doi 10 1002 andp 19053220607 Heisenberg W 1958 Physics and Philosophy the Revolution in Modern Science in Engels New York Harper amp Row Jaynes E T 2003 Larry G red Probability Theory The Logic of Science in Engels Cambridge University Press ISBN 978 0 521 59271 0 Murdoch D 1987 Niels Bohr s Philosophy of Physics in Engels Cambridge UK Cambridge University Press ISBN 978 0 521 33320 7 de Broglie L 1923 Radiations Ondes et quanta PDF Comptes Rendus in Frans 177 507 510 548 630 Landau L D Lifshitz E M 1977 Quantum Mechanics Non Relativistic Theory in Engels Vol 3 3de uitg Pergamon Press ISBN 978 0 08 020940 1 volume has extra text help Newton R G 2002 Quantum Physics a Text for Graduate Student in Engels New York Springer ISBN 978 0 387 95473 8 Aantekeninge Wysig Die aantal onafhanklike parameters wat die konfigurasie of toestand van n voorwerp definieer n Fisiese hoeveelheid wat gemeet kan word Basies vir alle lineere stelsels is die nettoresultaat wat deur twee of meer aksies veroorsaak word die som van die resultate wat elke aksie afsonderlik sou veroorsaak het In sy eenvoudigste vorm stel dit voor dat die waarskynlikheidsdigtheid om n deeltjie op n gegewe punt te vind wanneer dit gemeet is proporsioneel is aan die kwadraat van die grootte van die deeltjie se golffunksie op daardie punt Dit gee uitdrukking aan die onvermoe van die klassieke begrippe deeltjie of golf om die gedrag van voorwerpe op die kwantumskaal volledig te beskryf Verwysings Wysig Born 1926a pp 354 357 Heisenberg 1958 p 143 Murdoch 1987 p 43 de Broglie 1960 p 48 Landau amp Lifshitz 1977 p 6 Newton 2002 pp 19 21 Born 1926a Born 1926b Jaynes 2003 Einstein 1998 p 682 Ontsluit van https af wikipedia org w index php title Golffunksie amp oldid 2379199,